Please wait a minute...
金属学报  2022, Vol. 58 Issue (4): 529-540    DOI: 10.11900/0412.1961.2021.00547
  综述 本期目录 | 过刊浏览 |
核级镍基合金焊接材料失塑裂纹研究现状
余春1, 徐济进1, 魏啸2, 陆皓1()
1.上海交通大学 材料科学与工程学院 上海 200240
2.中微半导体(上海)有限公司 上海 201201
Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials
YU Chun1, XU Jijin1, WEI Xiao2, LU Hao1()
1.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.Advanced Micro-Fabrication Equipment, Inc. (AMEC), Shanghai 201201, China
引用本文:

余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
Chun YU, Jijin XU, Xiao WEI, Hao LU. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. Acta Metall Sin, 2022, 58(4): 529-540.

全文: PDF(2466 KB)   HTML
摘要: 

镍基合金及其焊接材料因具有优异的耐蚀性和高温力学性能,成为核电站关键设备中的关键材料,其焊接质量关系到核电站的安全运行。失塑裂纹(ductility-dip crack,DDC)是镍基合金中常见的一种微观缺陷,常常出现在多层多道焊中,因其尺寸小(长100 μm左右)、难检测,成为核电站运行安全的潜在威胁。本文简要地回顾了核级镍基合金及其焊接材料的发展历程,从镍基600系列合金发展到690系列合金,解决了焊接接头晶间腐蚀裂纹问题,但对之引起的焊接DDC问题,从成分设计角度,开发了以Inconel 52、Inconel 52M和Inconel 52MSS为代表的焊接材料,焊接接头的DDC敏感性逐步降低,但此问题至今并未完全解决。介绍了DDC的微观特征及其敏感性评价方法,总结了目前比较认可的DDC开裂机制,从成分和微观组织角度分析了其影响因素,最后进行了展望。

关键词 镍基合金失塑裂纹焊接微观组织    
Abstract

Nickel-based alloys and their welding materials have been the key materials in establishing key nuclear equipment due to their excellent corrosion-resistance and high-temperature mechanical properties. Therefore, the welding quality of nickel-based alloys is greatly responsible for the safe service of nuclear plants. However, ductility-dip crack (DDC) was commonly observed in the heat-affected zone during multipass welding. DDC is hard to detect by common nondestructive testing due to the micro‐size of the crack (approximately 100 μm in length). Hence, the high‐temperature DDC problem is a potential threat to the safety of nuclear plants. In this paper, the development of nuclear-level nickel-based alloys and their welding materials is reviewed. To solve the stress corrosion cracking occurring in the welding joint of Inconel 600, Inconel 690 was developed. However, a new reliability problem, DDC, was introduced. Researchers in the world developed Inconel 52, Inconel 52M, and Inconel 52MSS gradually from the design of the chemical components, and the DDC sensibility decreased. Presently, the DDC problem has not been solved completely. The evaluation methods of DDC were introduced, the cracking mechanisms were summarized, and the factors affecting the DDC were analyzed on the view of chemical components and microstructure. In conclusion, the research on DDC has been prospected briefly.

Key wordsnickel-based alloy    ductility-dip crack    welding    microstructure
收稿日期: 2021-12-13     
ZTFLH:  TG146.15  
作者简介: 余 春,男,1980年生,副研究员,博士
图1  材料的高温塑性变化示意图[28]
图2  Inconel 52M焊缝金属的OM像及其大角度晶界上析出相的SEM像[42]
图3  镍基合金焊接凝固组织晶界类型示意图[45]及失塑裂纹(DDC)敏感区域[28]
图4  镍基合金中的DDC微观形貌及1000℃下的拉伸断口形貌[42]
图5  改进STF试样示意图[42]
图6  基于原位观察的热拉伸实验[55]
图7  不同形貌晶界滑移诱发DDC开裂机制[23]
图8  Inconel 690合金经不同温度热处理不同时间后的碳化物形貌[89]
图9  Inconel 690合金的晶界析出相与晶界类型的关系[90]
1 International atomic energy agency. Nuclear power reactors in the world [EB/OL]. Vienna, July 2021.
2 Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61: 735
3 Jang C, Lee J, Kim J S, et al. Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel [J]. Int. J. Press. Vessels Pip., 2008, 85: 635
4 Li Y F, Wang J Q, Han E H, et al. Multi-scale study of ductility-dip cracking in nickel-based alloy dissimilar metal weld [J]. J. Mater. Sci. Technol., 2019, 35: 545
5 Cheung C, Erb U, Palumbo G. Application of grain boundary engineering concepts to alleviate intergranular cracking in alloys 600 and 690 [J]. Mater. Sci. Eng., 1994, A185: 39
6 Frédérick G, Hernalsteen P. Comparative evaluation of preventive measures against primary side stress corrosion cracking of mill annealed Inconel 600 steam generator tubes [J]. Int. J. Press. Vessels Pip., 1986, 25: 47
7 Hsu S S, Tsai S C, Kai J J, et al. SCC behavior and anodic dissolution of Inconel 600 in low concentration thiosulfate [J]. J. Nucl. Mater., 1991, 184: 97
8 Rios R, Magnin T, Noel D, et al. Critical analysis of alloy 600 stress corrosion cracking mechanisms in primary water [J]. Metall. Mater. Trans., 1995, 26A: 925
9 Fuchs G E, Hayden S Z. The microstructure and tensile properties of mitrogen containing vacuum atomized alloy 690 [J]. Scr. Metall. Mater., 1991, 25: 1483
10 Grönwall B, Ljungberg L, Hübner W, et al. Intercrystalline stress corrosion cracking of Inconel 600 inspection tubes in the Ågesta reactor [J]. Nucl. Eng. Des., 1967, 6: 383
11 Kai J J, Yu G P, Tsai C H, et al. The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of Inconel alloy 690 [J]. Metall. Trans., 1989, 20A: 2057
12 Magnin T, Noël D, Rios R. Microfractographic aspects of stress corrosion cracking of Inconel 600 in a pressurized water reactor environment [J]. Mater. Sci. Eng., 1994, A177: L11
13 Miglin B P, Theus G J. Stress corrosion cracking of alloy 600 and 690 in all volatile treated water at elevated temperatures [R]. Polo Alto: Electric Power Research Institute, 1988
14 Kai J J, Tsai C H, Huang T A, et al. The effects of heat treatment on the sensitization and SCC behavior of Inconel 600 alloy [J]. Metall. Trans., 1989, 20A: 1077
15 Casales M, Salinas-Bravo V M, Martinez-Villafañe A, et al. Effect of heat treatment on the stress corrosion cracking of alloy 690 [J]. Mater. Sci. Eng., 2002, A332: 223
16 Crum J R, Scarberry R C. Corrosion testing of Inconel alloy 690 for PWR steam generators [J]. J. Mater. Energy Syst., 1982, 4: 125
17 Dutta R S, Tewari R, De P K. Effects of heat-treatment on the extent of chromium depletion and caustic corrosion resistance of Alloy 690 [J]. Corros. Sci., 2007, 49: 303
18 Strauss S D. Inconel 690 is alloy of choice for steam-generator tubing [J]. Power, 1996, 140: 29
19 Collins M G, Lippold J C. An investigation of ductility dip cracking in nickel-based filler materials—Part I [J]. Weld. J., 2003, 82: 288s
20 Davé V R, Cola M J, Kumar M, et al. Grain boundary character in alloy 690 and ductility-dip cracking susceptibility [J]. Weld. J., 2004, 83: 1s
21 Lippold J C. Recent developments in weldability testing [A]. Hot Cracking Phenomena in Welds [M]. Berlin: Springer, 2005: 271
22 Noecker II F F, DuPont J N. Metallurgical investigation into ductility dip cracking in Ni-based alloys: Part II [J]. Weld. J., 2009, 88: 62s
23 Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal: Part II—Insight into the mechanism for ductility dip cracking [J]. Mater. Sci. Eng., 2004, A380: 245
24 Wu W T, Tsai C H. Hot cracking susceptibility of fillers 52 and 82 in alloy 690 welding [J]. Metall. Mater. Trans., 1999, 30A: 417
25 Young G A, Capobianco T E, Penik M A, et al. The mechanism of ductility dip cracking in nickel-chromium alloys [J]. Weld. J., 2008, 87: 31s
26 Lippold J C, Nissley N E. Ductility-dip cracking in high chromium, Ni-Base filler metals [A]. Hot Cracking Phenomena in Welds II [M]. Berlin: Springer, 2008: 409
27 Ramirez A J, Garzón C M. Thermodynamic and kinetic approach to ductility-dip cracking resistance improvement of Ni-base alloy ERNiCrFe-7: Effect of Ti and Nb additions [A]. Hot Cracking Phenomena in Welds II [M]. Berlin: Springer, 2008: 427
28 Fink C, Zinke M, Jüttner S. An investigation of ductility-dip cracking in the base metal heat-affected zone of wrought nickel base alloys—Part II: Correlation of PVR and STF results [J]. Weld. World, 2016, 60: 951
29 Collins M G, Lippold J C, Kikel J M. Quantifying ductility-dip cracking susceptibility in nickel-base weld metals using the strain-to-fracture test [A]. 6th International Conference on Trends in Welding Research [C]. Phoenix, AZ, 2003: 586
30 Collins M G, Ramirez A J, Lippold J C. An investigation of ductility dip cracking in nickel-based weld metals—Part II [J]. Weld. J., 2003, 82: 348s
31 Kikel J M, Parker D M. Ductility dip cracking susceptibility of filler metal 52 and alloy 690 [A]. Trends in Welding Research: Proceedings of the 5th International Conference [C]. Pine Mountain, GA, 1998: 757
32 Torres E A, Caram R, Ramirez A J. Grain boundary sliding phenomenon and its effect on high temperature ductility of Ni-base alloys [J]. Mater. Sci. Forum, 2010, 638-642: 2858
33 Hall E L, Briant C L. The microstructural response of mill-annealed and solution-annealed Inconel 600 to heat treatment [J]. Metall. Trans., 1985, 16A: 1225
34 Lippold J C, Nissley N E. Further investigations of ductility-dip cracking in high chromium, Ni-base filler metals [J]. Weld. World, 2007, 51: 24
35 Kiser S D, Zhang R, Baker B A. A new welding material for improved resistance to ductility dip cracking [A]. 8th International Conference on Trends in Welding Research [C]. Pine Mountain, GA, 2009: 639
36 Lee H T, Jeng S L. Characteristics of dissimilar welding of alloy 690 to 304L stainless steel [J]. Sci. Technol. Weld. Joining, 2001, 6: 225
37 Jeng S L, Chang Y H. The influence of Nb and Mo on the microstructure and mechanical properties of Ni-Cr-Fe GTAW welds [J]. Mater. Sci. Eng., 2012, A555: 1
38 Jeng S L, Lee H T, Huang J Y, et al. Effects of Nb on the microstructure and elevated-temperature mechanical properties of alloy 690-SUS 304L dissimilar welds [J]. Mater. Trans., 2008, 49: 1270
39 Jeng S L, Lee H T, Weirich T E, et al. Microstructual study of the dissimilar joints of alloy 690 and SUS 304L stainless steel [J]. Mater. Trans., 2007, 48: 481
40 Yushchenko K, Savchenko V, Chervyakov N, et al. Comparative hot cracking evaluation of welded joints of alloy 690 using filler metals Inconel® 52 and 52 MSS [J]. Weld. World, 2011, 55: 28
41 Hope A T, Lippold J C. Development and testing of a high-chromium, Ni-based filler metal resistant to ductility dip cracking and solidification cracking [J]. Weld. World, 2017, 61: 325
42 Chen J Q. Research on ductility-dip cracking of filler metal 52M[D]. Shanghai: Shanghai Jiao Tong University, 2014
42 陈静青. FM-52M熔敷金属高温失塑裂纹机理研究 [D]. 上海: 上海交通大学, 2014
43 Chen J Q, Lu H, Cui W, et al. Effect of grain boundary behaviour on ductility dip cracking mechanism [J]. Mater. Sci. Technol., 2014, 30: 1189
44 Nissley N E, Lippold J C. Ductility-dip cracking susceptibility of filler metal 52 and 52M Ni-base filler metals [A]. 7th International Conference on Trends in Welding Research [C]. Pine Mt, GA,2005: 327
45 Wei X. Investigation and assessment of ductility dip cracking susceptibility in Inconel 690 overlay [D]. Shanghai: Shanghai Jiao Tong University, 2019
45 魏 啸. Inconel 690熔覆金属高温失塑裂纹敏感性及评价方法研究 [D]. 上海: 上海交通大学, 2019
46 Nissley N E, Lippold J C. Development of the strain-to-fracture test [J]. Weld. J., 2003, 82: 355
47 Nissley N E, Lippold J C. Ductility-dip cracking susceptibility of austenitic alloys [A]. 6th International Conference on Trends in Welding Research [C]. Phoenix, AZ, 2003: 64
48 Qin R Y, Wang H, He G. Investigation on the microstructure and ductility-dip cracking susceptibility of the butt weld welded with ENiCrFe-7 nickel-base alloy-covered electrodes [J]. Metall. Mater. Trans., 2015, 46A: 1227
49 Moon J, Jang J H, Kim S D, et al. Different aspect of solidification cracking susceptibility and hot ductility behavior of borated stainless steels and the effects of boron content [J]. Mater. Charact., 2020, 164: 110319
50 Chen J Q, Yu C, Chen J M, et al. Assessment of ductility dip cracking susceptibility on Ni based alloy by FEM simulation [J]. Sci. Technol. Weld. Joinning, 2012, 17: 656
51 Mo W L, Lu S P, Li D Z, et al. Effects of filler metal composition on the microstructure and mechanical properties for ER NiCrFe-7 multi-pass weldments [J]. Mater. Sci. Eng., 2013, A582: 326
52 Torres E A, Montoro F, Righetto R D, et al. Development of high-temperature strain instrumentation for in situ SEM evaluation of ductility dip cracking [J]. J. Microsc., 2014, 254: 157
53 Unfried J S, Ramirez A J. Intergranular cracking in alloy 690 with Nb, Mo, and Hf Additions: In situ SEM high temperature deformation study [J]. Mater. Sci. Forum, 2012, 706-709: 945
54 Unfried J S, Torres E A, Ramirez A J. In situ observations of ductility-dip cracking mechanism in Ni-Cr-Fe alloys [A]. Hot Cracking Phenomena in Welds III [M]. Berlin: Springer, 2011: 295
55 Kadoi K, Uegaki T, Shinozaki K, et al. New measurement technique of ductility curve for ductility-dip cracking susceptibility in alloy 690 welds [J]. Mater. Sci. Eng., 2016, A672: 59
56 Kadoi K, Hiraoka M, Shinozaki K, et al. Ductility-dip cracking susceptibility in dissimilar weld metals of alloy 690 filler metal and low alloy steel [J]. Mater. Sci. Eng., 2019, A756: 92
57 Nissley N E. Intermediate temperature grain boundary embrittlement in nickel-base weld metals [D]. Ohio: The Ohio State University, 2006
58 Zheng L, Schmitz G, Meng Y, et al. Mechanism of intermediate temperature embrittlement of Ni and Ni-based superalloys [J]. Crit. Rev. Solid State Mater. Sci., 2012, 37: 181
59 Rhines F N, Wray P J. Investigation of the intermediate temperature ductility minimum in metals [J]. Trans. ASM, 1961, 54: 117
60 Capobianco T E, Hanson M E. Auger spectroscopy results from ductility dip cracks opened under ultra-high vacuum [A]. 7th International Conference on Trends in Welding Research [C]. Pine Mt, GA, 2005: 767
61 Nishimoto K, Saida K, Okauchi H, et al. Microcracking in multipass weld metal of alloy 690 Part 2—Microcracking mechanism in reheated weld metal [J]. Sci. Technol. Weld. Joinning, 2006, 11: 462
62 Nishimoto K, Saida K, Okauchi H, et al. Microcracking in multipass weld metal of alloy 690 Part 3—Prevention of microcracking in reheated weld metal by addition of La to filler metal [J]. Sci. Technol. Weld. Joinning, 2006, 11: 471
63 Vallant R. The influence of different Nb-contents on the hot cracking susceptibility of Ni-base weld metals type 70/20 [A]. Hot Cracking Phenomena in Welds [M]. Berlin: Springer, 2005: 141
64 Yamanaka K, Minami T, Tokimasa K, et al. Intergranular corrosion test method for nickel-based alloy 690 [J]. J. Jpn. Inst. Met, 1985, 49: 125
64 山中 和夫, 南 孝男, 時政 勝行 等. Ni基690合金に適用できる粒界腐食試験法 [J]. 日本金属学会誌, 1985, 49: 125
65 Yamaguchi M, Shiga M, Kaburaki H. Grain boundary decohesion by impurity segregation in a nickel-sulfur system [J]. Science, 2005, 307: 393
66 Lee H T, Jeng S L, Kuo T Y. The microstructure and fracture behavior of the dissimilar alloy 690-SUS 304L joint with various Nb addition [J]. Metall. Mater. Trans., 2003, 34A: 1097
67 Jeng S L, Lee H T, Rehbach W P, et al. Effects of Nb on the microstructure and corrosive property in the alloy 690-SUS 304L weldment [J]. Mater. Sci. Eng., 2005, A397: 229
68 Nagano H, Yamanaka K, Kobayashi K, et al. Development and manufacturing system for alloy 690 tubing for PWR steam Generators [J]. Sumitomo Search, 1989, 40: 57
69 Mo W L, Zhang X, Lu S P, et al. Effect of Nb content on microstructure, welding defects and mechanical properties of NiCrFe-7 weld metal [J]. Acta Metall. Sin., 2015, 51: 230
69 莫文林, 张 旭, 陆善平 等. Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响 [J]. 金属学报, 2015, 51: 230
70 Jeng S L, Lee H T, Kuo T Y, et al. The effects of Mn and Nb on the microstructure and mechanical properties of alloy 152 welds [J]. Mater. Des., 2015, 87: 920
71 Li S, Chen B, Ma Y C, et al. Effects of nitrogen content on microstructure and mechanical property of alloy 690 [J]. Acta Metall. Sin., 2011, 47: 816
71 李 硕, 陈 波, 马颖澈 等. N含量对690合金显微组织和室温力学性能的影响 [J]. 金属学报, 2011, 47: 816
72 Lee H T, Jeng S L, Yen C H, et al. Dissimilar welding of nickel-based alloy 690 to SUS 304L with Ti addition [J]. J. Nucl. Mater., 2004, 335: 59
73 Jeng S L, Chang Y H. Microstructure and flow behavior of Ni-Cr-Fe welds with Nb and Mo additions [J]. Mater. Sci. Eng., 2013, A560: 343
74 Nissley N E, Lippold J C. Ductility-dip cracking susceptibility of nickel-based weld metals Part 1: Strain-to-fracture testing [J]. Weld. J., 2008, 87: 257
75 Nissley N E, Lippold J C. Ductility-dip cracking susceptibility of nickel-based weld metals Part 2: Microstructural characterization [J]. Weld. J., 2009, 88: 131
76 Noecker II F F, DuPont J N. Metallurgical investigation into ductility dip cracking in Ni-based alloys: Part I [J]. Weld. J., 2009, 88: 7
77 Han B. Investigation on ductility dip cracking susceptibility of deposited metal with new type 690 nickel alloy strip by electroslag cladding [D]. Beijing: China Academy of Machinery Science & Technology, 2018
77 韩 波. 新型690镍基合金带极堆焊熔敷金属DDC裂纹敏感性研究 [D]. 北京: 机械科学研究总院, 2018
78 Mo W L, Hu X B, Lu S P, et al. Effects of boron on the microstructure, ductility-dip-cracking, and tensile properties for NiCrFe-7 weld metal [J]. J. Mater. Sci. Technol., 2015, 31: 1258
79 Nishimoto K, Saida K, Fujiya Y. Amelioration of microcracking in multipass weld metal of alloy 690 by adding rare earth metals [A]. ASME 2009 Pressure Vessels and Piping Conference [C]. Prague: ASME, 2009: 1063
80 Nishimoto K, Saida K, Okauchi H. Microcracking in multipass weld metal of alloy 690 Part 1—Microcracking susceptibility in reheated weld metal [J]. Sci. Technol. Weld. Joining, 2006, 11: 455
81 Saida K, Taniguchi A, Okauchi H, et al. Prevention of microcracking in dissimilar multipass welds of alloy 690 to type 316L stainless steel by Ce addition to filler metal [J]. Sci. Technol. Weld. Joining, 2011, 16: 553
82 Zimina L N, Burova N N, Makushok O V. Effect of hafnium on the structure and properties of wrought nickel-base alloys [J]. Met. Sci. Heat Treat., 1986, 28: 130
83 Feng X L, Hope A, Lippold J C. Effect of Cr on eutectic phase formation and solidification temperature range in Ni-Cr-Hf system [J]. Mater. Lett., 2014, 116: 79
84 Pouranvari M, Ekrami A, Kokabi A H. Solidification and solid state phenomena during TLP bonding of IN718 superalloy using Ni-Si-B ternary filler alloy [J]. J. Alloys Compd., 2013, 563: 143
85 Chellali M R, Zheng L, Schlesiger R, et al. Grain boundary segregation in binary nickel-bismuth alloy [J]. Acta Mater., 2016, 103: 754
86 Rapetti A, Christien F, Tancret F, et al. Surfactant effect of impurity sulphur in ductility dip cracking of a high-chromium nickel model alloy [J]. Scr. Mater., 2021, 194: 113680
87 Platt P, Sayers J, Horner D A, et al. Hydrogen-induced brittle fracture in nickel based alloy 82 weld metal [J]. Corros. Sci., 2019, 153: 118
88 Sahlaoui H, Sidhom H, Philibert J. Prediction of chromium depleted-zone evolution during aging of Ni-Cr-Fe alloys [J]. Acta Mater., 2002, 50: 1383
89 Jiao S Y, Zhang M C, Zheng L, et al. Investigation of carbide precipitation process and chromium depletion during thermal treatment of alloy 690 [J]. Metall. Mater. Trans., 2010, 41A: 26
90 Lim Y S, Kim J S, Kim H P, et al. The effect of grain boundary misorientation on the intergranular M23C6 carbide precipitation in thermally treated alloy 690 [J]. J. Nucl. Mater., 2004, 335: 108
91 Sennour M, Chaumun E, Crépin J, et al. TEM investigations on the effect of chromium content and of stress relief treatment on precipitation in alloy 82 [J]. J. Nucl. Mater., 2013, 442: 262
92 Li H, Xia S, Zhou B X, et al. C-Cr segregation at grain boundary before the carbide nucleation in alloy 690 [J]. Mater. Charact., 2012, 66: 68
93 Li H, Xia S, Zhou B X, et al. The dependence of carbide morphology on grain boundary character in the highly twinned alloy 690 [J]. J. Nucl. Mater., 2010, 399: 108
94 Li H, Xia S, Zhou B X, et al. The growth mechanism of grain boundary carbide in alloy 690 [J]. Mater. Charact., 2013, 81: 1
95 Mo W L, Lu S P, Li D Z, et al. Effects of M23C6 on the high-temperature performance of Ni-based welding material NiCrFe-7 [J]. Metall. Mater. Trans., 2014, 45A: 5114
96 Qin R Y, Duan Z L, He G. Microstructure and ductility-dip cracking susceptibility of circumferential multipass dissimilar weld between 20MND5 and Z2CND18-12NS with Ni-base filler metal 52 [J]. Metall. Mater. Trans., 2013, 44A: 4661
97 Lee T H, Suh H Y, Han S K, et al. Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes [J]. J. Nucl. Mater., 2016, 479: 85
98 Ramirez A J, Lippold J C. New insight into the mechanism of ductility-dip cracking in Ni-base weld metals [A]. Hot Cracking Phenomena in Welds [M]. Berlin: Springer, 2005: 19
99 Chen J Q, Lu H, Yu C, et al. Ductility dip cracking mechanism of Ni-Cr-Fe alloy based on grain boundary energy [J]. Sci. Technol. Weld. Joinning, 2013, 18: 346
100 Wu D, Li D Z, Lu S P. Microstructures and intermediate temperature brittleness of newly developed Ni-Fe based weld metal for ultra-supercritical power plants [J]. Mater. Sci. Eng., 2017, A684: 146
101 Wei X, Xu M J, Chen J Q, et al. Fractal analysis of Mo and Nb effects on grain boundary character and hot cracking behavior for Ni-Cr-Fe alloys [J]. Mater. Charact., 2018, 145: 65
102 Yu X, Lim Y C, Smith R, et al. Reducing hot cracking tendency of dissimilar weld overlay by magnetic arc oscillation [J]. Mater. Sci. Technol., 2014, 30: 930
103 Hua C, Lu H, Yu C, et al. Reduction of ductility-dip cracking susceptibility by ultrasonic-assisted GTAW [J]. J. Mater. Process. Technol., 2017, 239: 240
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[6] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[9] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[14] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[15] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.