Please wait a minute...
金属学报  2023, Vol. 59 Issue (1): 106-124    DOI: 10.11900/0412.1961.2022.00436
  综述 本期目录 | 过刊浏览 |
搅拌摩擦增材制造技术研究进展
李会朝1, 王彩妹1, 张华1(), 张建军1, 何鹏2, 邵明皓1, 朱晓腾1, 傅一钦3
1.北京石油化工学院 机械工程学院 北京 102617
2.哈尔滨工业大学 先进焊接与连接国家重点实验室 哈尔滨 150001
3.中国石油天然气集团有限公司 北京 100724
Research Progress of Friction Stir Additive Manufacturing Technology
LI Huizhao1, WANG Caimei1, ZHANG Hua1(), ZHANG Jianjun1, HE Peng2, SHAO Minghao1, ZHU Xiaoteng1, FU Yiqin3
1.School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2.State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
3.China National Petroleum Corporation, Beijing 100724, China
引用本文:

李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
Huizhao LI, Caimei WANG, Hua ZHANG, Jianjun ZHANG, Peng HE, Minghao SHAO, Xiaoteng ZHU, Yiqin FU. Research Progress of Friction Stir Additive Manufacturing Technology[J]. Acta Metall Sin, 2023, 59(1): 106-124.

全文: PDF(5037 KB)   HTML
摘要: 

本文归纳总结了国内外的搅拌摩擦增材制造(FSAM)技术的研究进展,搅拌摩擦增材制造具有成形快、增材效率高、过程绿色环保等特点。此外,其作为一种固相增材技术,能够有效避免其他熔化增材方法成形过程中引起的缩松、孔隙等缺陷。目前报道的搅拌摩擦增材制造方法,大致可以分为4大类:轴向增材制造、径向增材制造、消耗型搅拌摩擦工具增材制造和叠加板材增材制造。详细列举了搅拌摩擦增材与激光、电弧增材样品微观组织与性能,阐述了不同增材方法的优缺点和适用领域,介绍了搅拌摩擦增材设备单位及已经开展的初步应用和未来设计的搅拌摩擦增材装置的发展方向,为搅拌摩擦增材技术的进一步应用奠定了基础。

关键词 固相增材搅拌摩擦增材制造微观组织力学性能    
Abstract

This paper summarizes the research progress of friction stir additive manufacturing (FSAM) technology at home and abroad. FSAM is fast-forming, has high additive efficiency, and provides environmental protection. In addition, as a solid-phase additive technology, it effectively avoids shrinkage, porosity, and other defects caused by other melt-additive methods during molding. Currently, reported FSAM methods can be roughly divided into four categories: axial additive manufacturing, radial additive manufacturing, consumable friction-stir tool additive manufacturing, and superimposed plate additive manufacturing. The microstructures and properties of friction stir, laser, and arc additive samples are listed in detail. The advantages and disadvantages of the different additive methods and their application fields are expounded. The companies of friction stir additive equipment, the preliminary applications, and the development direction of friction stir additive equipment designed in the future are introduced. It lays a foundation for further application of friction stir additive technology.

Key wordssolid phase additive    friction stir    additive manufacturing    microstructure    mechanical property
收稿日期: 2022-09-01     
ZTFLH:  TG439.8  
基金资助:先进焊接与连接国家重点实验室(哈尔滨工业大学)开放课题研究基金项目(AWJ-23M08);北京石油化工学院交叉科研探索项目(BIPTCSF-013)
作者简介: 李会朝,男,1999年生,硕士生
图1  搅拌摩擦增材制造(FSAM)方法分类
图2  热丝摩擦增材装置设备工作原理图[56]
图3  静止轴肩空腔增材装置原理图
图4  螺旋槽增材装置原理图
图5  螺旋槽粉末增材装置原理图
图6  送料孔粉末增材装置原理图[61]
图7  方形原料条增材装置原理图
图8  短棒物料增材装置原理图
图9  原料棒连续增材装置原理图[65]
图10  颗粒式增材装置原理图
图11  半固态增材装置原理图
图12  径向逐圈增材装置原理图[69]
图13  径向逐层增材装置原理图
图14  施加冷却的增材装置原理图[75]
MaterialFSAM methodMicrostructureMechanical propertyInstituteRef.
304 austenitic stainless steel

Consumable friction stir

tool

Equiaxed crystalsThe tensile test results show that the yield strength of the original stainless steel bar and the additive deposited part are 380 and 390 MPa, the tensile strength are 710 and 690 MPa, and the elongation are 50 % and 30 %, respectively

Indian Institute

of Technology

[78]
formed by
dynamic
recrystallization

7075 aluminum alloy

Axial addition of rod

The average hardness of the substrate and the additive raw rod is measured to be 164 HV, and most of the deposited materials exhibit a hardness value higher than 140 HV, comparable to the hardness of the raw rodVirginia Polytechnic Institute and State University[79]

2024 aluminum alloy

Superimposed

plate

The microhardness of the substrate is 130 HV, the minimum hardness of the bottom zone of the additive is 74 HV, and the maximum hardness of the top zone of the additive is 99 HV. The changes of the second phase and the grain cause the microhardness of the additive to be lower than that of the substrate

Nanchang Hangkong University

[80]

6561 aluminum alloy

Radial

layer-by-layer

additive

The tensile strength of the substrate and the additive strip is 465.57 MPa, and the maximum tensile strength of the stable additive zone is 203.67 MPa. The microhardness of the substrate and the additive strip is about 155 and 125 HV, respectively. The microhardness of the stable additive zone gradually decreases from the surface of the topmost additve strip to the interior,

but the hardness of the stable additive zone is generally stable at about 60 HV

Northeast Forestry University

[71]
表1  不同材料FSAM样品性能与组织特点[71,78~80]
MaterialAdditiveStirring center coreDepositionDeposition crossInner depositionRef
manufacturingarealongitudinalsectionregion
(AM) methodsection

2024-O aluminium alloy

FSAMUniform equiaxed grains with an average size of about 9.4 μm---[32]

2024-T6 aluminium alloy

Laser additive manufacturing

-Stripe shaped microstructures with the ribbon spacing of 0.5 mm

Stripe shaped microstructure

-[81]

AA2024 aluminum alloy

Arc additive manufacturing

---Banded columnar dendrites, equiaxed dendrites, and equiaxed non-dendrites[82]
表2  FSAM与激光、电弧增材样品微观组织特点[32,81,82]
图15  增材制造后样品微观组织对比图[32,81,82]
AM method

Additive substrate

material

Condition classification

Sampling method of

tensile test

Rp0.2

MPa

Rm

MPa

A

%

H

MPa

Ref.
FSAM2024-OLap weldingParallel to the horizontal117.2227.831.1-[32]
aluminum alloysuperimposed platedirection of the additive travel
7N01-T4Along the direction of204.0297.019.478.0[83]
aluminum alloyadditive thickness
2024-T4Stationary shoulderAlong the direction of267.5268.263.072.0-92.0[74]
aluminum alloysuperimposed plateadditive thickness
Parallel to the horizontal283.9284.568.5-[74]
direction of the additive travel
Laser additive2024-T6Parallel deposition of 2024 aluminum alloy powderAlong the direction of120.7257.35.490.3[81]
manufacturingaluminum alloyadditive thickness

Cross deposition of

2024 aluminum alloy powder

188.3348.320.5110.8[81]
NZ30K-T5Selective laser meltingParallel to the horizontal380.0406.00.9-[84]
magnesiumof magnesium alloydirection of the additive
alloypowdertravel
6061 aluminumER4043 aluminumAlong the direction of114.7152.533.555.3[85]
alloysilicon alloy wireadditive thickness
Parallel to the horizontal119.7158.833.5-[85]
direction of the additive travel
Arc additiveAA2024-T6ER2319 Al-Cu alloyParallel to the horizontal374.0470.08.2146.0[82]
manufacturingaluminum alloyand ER5087 Al-Mgdirection of the additive travel
alloy wireAlong the direction of352.0410.02.1146.0[82]
additive thickness
AA2024-T4Parallel to the horizontal310.0458.012.7138.0[82]
aluminumdirection of the additive travel
alloyAlong the direction of294.0395.05.0138.0[82]
additive thickness
AZ31AZ31B magnesiumParallel to the horizontal77.3235.026.352.7[86]
magnesium alloyalloy welding wiredirection of the additive travel
Vertical to the horizontal76.0237.022.053.2[86]
direction of additive
manufacturing
5556 aluminumER5556 aluminumAlong the direction of-310.0-125.0[87]
alloyalloy welding wireadditive thickness
表3  3种方法增材件的拉伸性能对比[32,74,81~87]
FSAMAdditive formAdvantageDisadvantageScope of application
method
AxialWire materialLow cost; multiple wireSustainableComplexCarrier rockets, ships; automobiles
directionuninterruptedstructure;and other fields; suitable for
feeding holes; high
aluminum alloy ribbed panel
efficiency[59]additive;material
structure, inlet, complex frame
high additiveresidue in
beam structure of high efficiency,
efficiencyequipment
low cost manufacturing[58]
PowderChangeable moldingPreparation of new alloys difficult to prepare in equilibrium metallurgical processes[61]
parameters and additive
powder ratio[61]
Raw materialHigh material utilizationUltrafine grained homogeneous
rod
and small processingAM parts and thermoplastic
allowance[63]; expandedpolymers for various metals
additive geometry[62]and alloys[65]
GranulesDiversified materials andFSAM of gradient composites[67]
sizes[67]
VariousManufactruing of compositeFSAM of gradient composites[67]
materials canmaterials[67]
be added
RadialCircle-by-turnHigh additive quality; high load-bearingLow additiveManufacture of raw materials such
directionadditive components; high bonding strength[69]efficiencyas metals and metal matrix
composites with different
morphologies[69]
Layer-by-layerHigh material utilization; non-pollutingManufacture of dissimilar alloy
powder raw material; no structuraland light alloy structural parts[71]
limitations[71]
ConsumableRaw barSimple equipment method; simple operationAM of light metal structures such
frictionmaterialsteps; low cost; short manufacturing time;as aluminum alloy and magnesium
stir toolfast forming speed[72]alloy and stainless steel
SuperimposedLap based onSimple additive method; simple operationApplicable to aerospace,
plateFSWsteps; low costautomotive parts, ships, and
StationaryNo grinding or cutting after additiverail transportation fileds; and
shouldermanufacturingAM of aluminum alloy, magnesium
Apply coolingEffectively reduceing the thermal effect[75]alloy and other light metal
Stirring headThe material mixes more fully[76]structures, and stainless steel
with special
structure
Add presetHigh bonding strength; high joint quality;
heterogeneoushigh fracture strength[77]
metal
interlayer
表4  FSAM不同增材方式的优缺点和适用领域[58,59,61~63,65,67,69,71,72,75~77]
FSAMAdditive raw materialAdditive rawFSAM methodPreliminary application
equipment unitmaterial form
Meld ManufacturingAluminum alloy,Metal powdersAxial directionPrinting large metal parts, coating
Company, USAcopper alloy, nickeland rawapplications; component repair; metal
base alloy, titaniummaterials rodconnection; custom metal alloy and metal
alloymatrix composite blanks and parts
Harbin Institute ofLight alloy partsWireForming a few meters of aluminum alloy
Technology, Chinacomponents; application in aerospace
field; battlefield repair for amphibious
vehicles
Tianjin University,Aluminum alloy,Raw materialsForming a few meters of aluminum
Chinaaluminum lithiumrodalloy components
alloy, dissimilar
aluminum alloy
Beijing University ofAluminum alloy,WireAluminum alloy stiffened panel structure
Technology, Chinamagnesium alloy
Nanchang HangkongAluminum alloyPlateStatic shoulderStudy on microstructure and
University, Chinasuperimposedmechanical properties of
plateadditive parts
Indian Institute ofAustenitic stainlessConsumableConsumable
Technology, Indiansteelraw barfriction stir tool
material
Virginia PolytechnicAluminum alloyRaw materialsAxial direction
Institute and Staterod
University, USA
Northeast ForestryAluminum alloyAdditive stripsRadial direction
University, China
Beijing Institute ofAluminum alloyPlateSuperimposed
Technology, Chinaplate based on
FSW lap
principle
Catholic University ofMetal alloys ofMixture of-FSAM of gradient composites
Louvain, Belgiumdifferent materialsmultiple
materials
表5  FSAM设备单位及其开展的应用
1 Wang H J. Research status and development tendency of additive manufacturing [J]. J. Beijing Inf. Sci. Technol. Univ., 2014, 29(3): 20
1 王红军. 增材制造的研究现状与发展趋势 [J]. 北京信息科技大学学报, 2014, 29(3): 20
2 Lian Y P, Wang P D, Gao J, et al. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review [J]. Adv. Mech., 2021, 51: 648
2 廉艳平, 王潘丁, 高 杰 等. 金属增材制造若干关键力学问题研究进展 [J]. 力学进展, 2021, 51: 648
3 Lu B H, Li D C. Development of the additive manufacturing (3D printing ) technology [J]. Mach. Build. Auto., 2013, 42(4): 1
3 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化, 2013, 42(4): 1
4 Li D C, Tian X Y, Wang Y X, et al. Developments of additive manufacturing technology [J]. Electromach. Mould, 2012, (S1): 20
4 李涤尘, 田小永, 王永信 等. 增材制造技术的发展 [J]. 电加工与模具, 2012, (S1): 20
5 Yang Y H. Analysis of classifications and characteristic of additive manufacturing (3D print) [J]. Adv. Aeronaut. Sci. Eng., 2019, 10: 309
5 杨延华. 增材制造(3D打印)分类及研究进展 [J]. 航空工程进展, 2019, 10: 309
6 Zhang H, Yang K. Overview of the present situation and application of additive manufacturing [J]. Packag. Eng., 2021, 42(16): 9
6 张 衡, 杨 可. 增材制造的现状与应用综述 [J]. 包装工程, 2021, 42(16): 9
7 Harun W S W, Kamariah M S I N, Muhamad N, et al. A review of powder additive manufacturing processes for metallic biomaterials [J]. Powder Technol., 2018, 327: 128
doi: 10.1016/j.powtec.2017.12.058
8 Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta. Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
8 孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
9 Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
9 林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
10 Liu Y, Ren X H, Chang Y L, et al. Research status of metal additive manufacturing technology [J]. Hot Work. Technol., 2018, 47(19): 15
10 刘 勇, 任香会, 常云龙 等. 金属增材制造技术的研究现状 [J]. 热加工工艺, 2018, 47(19): 15
11 Hu M J, Ji L K, Ma Q R, et al. Overview of laser additive manufacturing technology and status [J]. Pet. Tubular Goods Instrum., 2019, 5(5): 1
11 胡美娟, 吉玲康, 马秋荣 等. 激光增材制造技术及现状研究 [J]. 石油管材与仪器, 2019, 5(5): 1
12 Zhang L H, Qian B, Zhang C R, et al. Summary of development trend of metal additive manufacturing technology [J]. Mater. Sci Technol., 2022, 30(1): 42
12 张立浩, 钱 波, 张朝瑞 等. 金属增材制造技术发展趋势综述 [J]. 材料科学与工艺, 2022, 30(1): 42
13 Zhou H L, Liu Y S, Song C B, et al. Development of 3D printing wire DY590 for additive manufacturing [J]. Weld. Technol., 2018, 47(6): 66
13 周海龙, 刘玉双, 宋昌宝 等. 增材制造用3D打印丝材DY590的开发 [J]. 焊接技术, 2018, 47(6): 66
14 Zhang X, Lin X H, Gao X Q, et al. Refractory metal materials made by additive manufacturing and its application progress [J]. Powder Metall. Ind., 2022, 32(3): 18
14 张 新, 林小辉, 高选乔 等. 增材制造难熔金属材料及其应用研究进展 [J]. 粉末冶金工业, 2022, 32(3): 18
15 Dang X L, Wang J. Research status and prospects of additive manufacturing technology at home and abroad [J]. Aviat. Precis. Manuf. Technol., 2020, 56(2): 35
15 党晓玲, 王 婧. 增材制造技术国内外研究现状与展望 [J]. 航空精密制造技术, 2020, 56(2): 35
16 Liu W, Li N, Zhou B, et al. Progress in additive manufacturing on complex structures and high-performance materials [J]. J. Mech. Eng., 2019, 55(20): 128
doi: 10.3901/JME.2019.20.128
16 刘 伟, 李 能, 周 标 等. 复杂结构与高性能材料增材制造技术进展 [J]. 机械工程学报, 2019, 55(20): 128
17 Gopan V, Leo Dev Wins K, Surendran A. Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review [J]. Cirp J. Manuf. Sci. Technol., 2021, 32: 228
doi: 10.1016/j.cirpj.2020.12.004
18 Yu L, Liu Y Y, Zhao Y. Research status of laser additive manufacturing material system for aluminum alloy [J/OL]. Surf. Technol.,
18 俞 亮, 刘永业, 赵 阳. 铝合金激光增材制造材料体系研究现状 [J/OL]. 表面技术,
19 Cao J W, Wang P, Liu Z Y, et al. Research progress on powder-based laser additive manufacturing technology of ceramics [J]. J. Inorg. Mater., 37(3), 2022, 37: 241
19 曹继伟, 王 沛, 刘志远 等. 基于粉末成形的激光增材制造陶瓷技术研究进展 [J]. 无机材料学报, 2022, 37: 241
doi: 10.15541/jim20210590
20 Gu D D, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
doi: 10.1179/1743280411Y.0000000014
21 Li N, Liu W, Wang Y, et al. Laser additive manufacturing on metal matrix composites: A review [J]. Chin. J. Mech. Eng., 2021, 34: 38
doi: 10.1186/s10033-021-00554-7
22 Pique A, Auyeung R C Y, Kim H, et al. Laser 3D micro-manufacturing [J]. J. Phys., 2016, 49D: 223001
23 Peng Q, Dong S Y, Yan S X, et al. An overview of defects in laser melting deposition forming products and the corresponding controlling methods [J]. Mater. Rep., 2018, 32: 2666
23 彭 谦, 董世运, 闫世兴 等. 激光熔化沉积成形缺陷及其控制方法综述 [J]. 材料导报, 2018, 32: 2666
24 Teng S M. Research progress of wire and arc additive manufacturing (end) [J]. Nonferrous Met. Process., 2022, 51(2): 9
24 滕树满. 电弧熔丝增材制造研究进展(续完) [J]. 有色金属加工, 2022, 51(2): 9
25 Zhang H Z. Basic study on wire-arc additive manufacturing of magnesium alloy fabricated by cold metal transfer heat source [D]. Shijiazhuang: Shijiazhuang Tiedao Univercity, 2021
25 张汉铮. 基于冷金属过渡的镁合金电弧增材制造技术基础研究 [D]. 石家庄: 石家庄铁道大学, 2021
26 Xiong J, Xue Y G, Chen H, et al. Status and development prospects of forming control technology in arc-based additive manufacturing [J]. Electr. Weld. Mach., 2015, 45(9): 45
26 熊 俊, 薛永刚, 陈 辉 等. 电弧增材制造成形控制技术的研究现状与展望 [J]. 电焊机, 2015, 45(9): 45
27 Xiong J T, Geng H B, Lin X, et al. Research status of wire and arc additive manufacture and its application in aeronautical manufacturing [J]. Aeronaut. Manuf. Technol., 2015, 58(23-24): 80
27 熊江涛, 耿海滨, 林 鑫 等. 电弧增材制造研究现状及在航空制造中应用前景 [J]. 航空制造技术, 2015, 58(23-24): 80
28 Sun J X, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
28 孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能 [J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
29 Wang M. Study on microstructure and mechanical properties of additive manufactured titanium alloy based on electron beam melting [D]. Zibo: Shandong University of technology, 2019
29 王 铭. 电子束增材制造钛合金组织与力学性能研究 [D]. 淄博: 山东理工大学, 2019
30 Wu F, Lin B C, Quan Y Z, et al. Review on equipment and application of electron-beam based additive manufacturing [J]. Vacuum, 2022, 59(1): 79
30 吴 凡, 林博超, 权银洙 等. 电子束增材制造设备及应用进展 [J]. 真空, 2022, 59(1): 79
31 Li S W, Gao Q W, Zhao J, et al. Research progress and prospect of electron beam freeform fabrication [J]. Mater. China, 2021, 40: 130
31 李绍伟, 郜庆伟, 赵 健 等. 电子束熔丝增材制造研究进展及展望 [J]. 中国材料进展, 2021, 40: 130
32 Zou S K. Investigation on the processing and mechanism of friction stir additive manufacturing of high strength aluminum alloy [D]. Beijing: Beijing Institute of Technology, 2016
32 邹胜科. 高强铝合金搅拌摩擦增材制造成形机理和工艺研究 [D]. 北京: 北京理工大学, 2016
33 Zhang H, Lin S B, Wu L, et al. Current progress and prospect of friction stir welding [J]. Trans. China Weld. Inst., 2003, 24(3): 91
33 张 华, 林三宝, 吴 林 等. 搅拌摩擦焊研究进展及前景展望 [J]. 焊接学报, 2003, 24(3): 91
34 Fu Z H, Huang M H, Zhou Z P, et al. Research status of friction stir welding [J]. Weld. Join., 2002, (11): 6
34 傅志红, 黄明辉, 周鹏展 等. 搅拌摩擦焊及其研究现状 [J]. 焊接, 2002, (11): 6
35 Gao Q W, Zhao J, Shu F Y, et al. Research progress in aluminum alloy additive manufacturing [J]. J. Mater. Eng., 2019, 47(11): 32
35 郜庆伟, 赵 健, 舒凤远 等. 铝合金增材制造技术研究进展 [J]. 材料工程, 2019, 47(11): 32
36 Hou Y X, Xu R Z, Li H, et al. Research status and prospect of friction stir welding technology of Al alloy [J]. Hot Work. Technol., 2019, 48(5): 1
36 侯艳喜, 徐荣正, 李 慧 等. 铝合金搅拌摩擦焊接技术的现状与展望 [J]. 热加工工艺, 2019, 48(5): 1
37 Threadgill P L, Leonard A J, Shercliff H R, et al. Friction stir welding of aluminium alloys [J]. Int. Mater. Rev., 2009, 54: 49
doi: 10.1179/174328009X411136
38 Johnson R. Friction stir welding of magnesium alloys [J]. Mater. Sci. Forum, 2003, 419-422: 365
doi: 10.4028/www.scientific.net/MSF.419-422.365
39 Li S Y. Research progress on friction stir welding process of aluminum/magnesium dissimilar alloys [J]. MW Met. Form., 2022, (6): 52
39 李首谊. 铝/镁异种合金搅拌摩擦焊工艺研究进展 [J]. 金属加工(热加工), 2022, (6): 52
40 Yang S Y, Liu D D. Status and prospect of friction stir welding of magnesium alloys [J]. Chin. J. Rare Met., 2014, 38: 896
40 杨素媛, 刘冬冬. 镁合金搅拌摩擦焊的研究现状与展望 [J]. 稀有金属, 2014, 38: 896
41 Ma Z Y, Shang Q, Ni D R, et al. Friction stir welding of magnesium alloys: A review [J]. Acta. Metall. Sin., 2018, 54: 1597
doi: 10.11900/0412.1961.2018.00392
41 马宗义, 商 乔, 倪丁瑞 等. 镁合金搅拌摩擦焊接的研究现状与展望 [J]. 金属学报, 2018, 54: 1597
doi: 10.11900/0412.1961.2018.00392
42 Shi Y W, Tang W. The principle and application of the friction stir welding [J]. Electr. Weld. Mach., 2000, 30(1): 6
42 史耀武, 唐 伟. 搅拌摩擦焊的原理与应用 [J]. 电焊机, 2000, 30(1): 6
43 Wang W F, Tong Y G, Wang C X. New wielding technology—FSW [J]. Electr. Weld. Mach., 2004, 34(1): 15
43 王文峰, 童彦刚, 王纯祥. 一种新型焊接工艺——搅拌摩擦焊 [J]. 电焊机, 2004, 34(1): 15
44 Zhang W, Chen X G, Zha C S. A new welding method of ship building—The principle and application of the friction stir welding [J]. Ship Sci. Technol., 2007, 29(4): 92
44 张 维, 陈宪刚, 查长松. 新型船舶焊接技术——搅拌摩擦焊的原理与应用 [J]. 舰船科学技术, 2007, 29(4): 92
45 Shen Z K. Hybrid friction stir welding technology for steel [D]. Lanzhou: Lanzhou University of Technology, 2011
45 申志康. 钢的复合搅拌摩擦焊技术 [D]. 兰州: 兰州理工大学, 2011
46 Zeng P. The characteristic of friction stir welding and its application in the aluminum alloy structure of ship [J]. Ship Ocean Eng., 2010, 39(1): 55
46 曾 平. 搅拌摩擦焊在船用铝合金结构中的应用 [J]. 船海工程, 2010, 39(1): 55
47 Luan G H. Development of friction stir welding in China [J]. Electr. Weld. Mach., 2004, 34(S1): 98
47 栾国红. 搅拌摩擦焊在中国的发展 [J]. 电焊机, 2004, 34(S1): 98
48 Liu R M, Sun C K, Dang Q M, et al. Research of friction stir welding tool [J]. Mach. Des. Manuf., 2004, (4): 45
48 刘日明, 孙成凯, 党青敏 等. 搅拌摩擦焊工具的研究现状 [J]. 机械设计与制造, 2004, (4): 45
49 Padhy G K, Wu C S, Gao S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review [J]. J. Mater. Sci. Techno., 2018, 34: 1
50 Xue F T, Liu H B. The overview of friction stir additive manufacturing [J]. Mod. Manuf. Eng., 2019, (4): 33
50 薛凤桐, 刘海滨. 摩擦搅拌增材制造发展概述 [J]. 现代制造工程, 2019, (4): 33
51 Shi L, Li Y, Xiao Y C, et al. Research progress of metal solid phase additive manufacturing based on friction stir [J]. J. Mater. Eng., 2022, 50(1): 1
51 石 磊, 李 阳, 肖亦辰 等. 基于搅拌摩擦的金属固相增材制造研究进展 [J]. 材料工程, 2022, 50(1): 1
52 Rathee S, Srivastava M, Pandey P M, et al. Metal additive manufacturing using friction stir engineering: A review on microstructural evolution, tooling and design strategies [J]. Cirp J. Manuf. Sci. Tec., 2021, 35: 560
53 Mishra R S, Haridas R S, Agrawal P. Friction stir-based additive manufacturing [J]. Sci. Technol. Weld. Join., 2022, 27: 141
doi: 10.1080/13621718.2022.2027663
54 Gao H Y, Li H J. Friction additive manufacturing technology: A state-of-the-art survey [J]. Adv. Mech. Eng., 2021, 13(7): 1
55 Seidi E, Miller S F, Carlson B E. Friction surfacing deposition by consumable tools [J]. J. Manuf. Sci. Eng., 2021, 143: 120801
doi: 10.1115/1.4050924
56 Liu X C, Ni Z H, Pei X J, et al. An additive manufacturing device based on hot wire friction micro-forging and the application method [P]. Chin. Pat, 202110386023.0, 2021
56 刘小超, 倪中华, 裴宪军 等. 一种基于热丝摩擦微锻的增材制造装置及制造方法 [P]. 中国专利, 202110386023.0, 2021)
57 Wan L, Chen S H, Huang T F, et al. A device and method for FSW additive manufacturing using static shoulder cavity [P]. Chin. Pat, 202011448053.1, 2021
57 万 龙, 陈思浩, 黄体方 等. 一种利用静止轴肩空腔进行FSW增材制造的装置及方法 [P]. 中国专利: 202011448053.1, 2021)
58 Zhao H X. Wire filling friction stir additive manufacturing device and additive manufacturing method [P]. Chin. Pat, 201810235551.4, 2019
58 赵华夏. 一种填丝搅拌摩擦增材制造装置及增材制造方法 [P]. 中国专利, 201810235551.4, 2019)
59 Shi L, Li Y, Xiao Y C, et al. A wire-filled static shoulder friction stir welding and additive manufacturing device and method [P]. Chin. Pat, 202110160985.4, 2021
59 石 磊, 李 阳, 肖亦辰 等. 一种填丝静轴肩搅拌摩擦焊接与增材制造装置及方法 [P]. 中国专利, 202110160985.4, 2021)
60 Zhang Z, Yuan H L, Tan Z J. A new friction stir additive manufacturing machine [P]. Chin. Pat, 201810229291. X, 2018
60 张 昭, 苑红磊, 谭治军 等. 一种新型的搅拌摩擦增材制造机 [P]. 中国专利, 201810229291.X, 2018)
61 Huang Y X, Zou M D, Meng X C, et al. Friction head and friction stir additive manufacturing method with adjustable components and synchronously feeding material [P]. Chin. Pat, 201910550014.3, 2019
61 黄永宪, 邹明达, 孟祥晨 等. 一种组分可调同步送料的摩擦头及摩擦增材制造方法 [P]. 中国专利, 201910550014.3, 2019)
62 Rodriguez R I, Bruno Z S. Methods and containers for loading raw material rods into additive friction stir deposition machines [P]. Chin. Pat, 202010806557. X, 2021
62 罗盖·I·罗德里格斯, 布鲁诺·萨莫拉诺·森德罗斯. 用于将原料棒装载到增材摩擦搅拌沉积机中的方法和容器 [P]. 中国专利, 202010806557.X, 2021)
63 Zhao H X, Wang W B. Friction flow additive manufacturing device and additive manufacturing method [P]. Chin. Pat, 201810234931.6, 2019
63 赵华夏, 王卫兵. 一种流动摩擦增材制造装置及增材制造方法 [P]. 中国专利, 201810234931.6, 2019)
64 Wan L, Wen Q, Huang T F. A additive manufacturing mechanism and manufacturing method based on short rod materials [P]. Chin. Pat, 202110172383.0, 2021
64 万 龙, 温 琦, 黄体方. 一种基于短棒物料增材制造机构及制造方法 [P]. 中国专利, 202110172383.0, 2021)
65 Huang Y X, Xie Y M, Meng X C. Continuously feeding friction stir additive manufacturing device and method [P]. Chin. Pat, 202110411108. X, 2021
65 黄永宪, 谢聿铭, 孟祥晨. 一种连续进给送料搅拌摩擦增材制造装置及增材制造方法 [P]. 中国专利, 202110411108.X, 2021)
66 Liu H J, Liu X Q, Hu Y Y, et al. A method of friction stir welding additive manufacturing bar [P]. Chin. Pat, 201510955775.9, 2016
66 刘会杰, 刘向前, 胡琰莹 等. 一种搅拌摩擦焊增材制造棒材的方法 [P]. 中国专利, 201510955775.9, 2016)
67 Shu X, Wan L, Lv Z L. A granule friction stir additive manufacturing device and method [P]. Chin. Pat, 202110284601. X, 2021
67 树 西, 万 龙, 吕宗亮. 一种颗粒式搅拌摩擦增材制造装置及方法 [P]. 中国专利, 202110284601.X, 2021)
68 Wan L, Liu J L, Lv Z L. A semi-solid additive manufacturing device and method [P]. Chin. Pat, 202011606242.7, 2021
68 万 龙, 刘景麟, 吕宗亮. 一种半固态增材制造装置及方法 [P]. 中国专利, 202011606242.7, 2021)
69 Ji S D, Li M S, Yue Y M, et al. A device and method for radial additive manufacturing of friction stir welding [P]. Chin. Pat, 201910915488.3, 2020
69 姬书得, 李鸣申, 岳玉梅 等. 一种搅拌摩擦焊径向增材制造的装置与方法 [P]. 中国专利, 201910915488.3, 2020)
70 Seidi E, Miller S F. A novel approach to friction surfacing: Experimental analysis of deposition from radial surface of a consumable tool [J]. Coatings, 2020, 10: 1016
doi: 10.3390/coatings10111016
71 Sun C W. Study on technology and microstructure performance of side friction stir additive manufacturing [D]. Harbin: Northeast Forestry University, 2020
71 孙朝伟. 侧向搅拌摩擦增材制造工艺与组织性能研究 [D]. 哈尔滨: 东北林业大学, 2020
72 Hua P, Li R, Xiao M, et al. A method of additive manufacturing by consumable stirring friction tools [P]. Chin. Pat, 201711019260.3, 2018
72 华 鹏, 李 枘, 肖 萌 等. 一种通过消耗型搅拌摩擦工具增材制造的方法 [P]. 中国专利, 201711019260.3, 2018)
73 Fu X R, Xing L, Huang C P, et al. Microstructure of 2024 aluminum alloy by stationary shoulder friction stir additive manufacturing [J]. Chin. J. Nonferrous Met., 2019, 29: 1591
73 傅徐荣, 邢 丽, 黄春平 等. 静轴肩搅拌摩擦增材制造2024铝合金的组织特征 [J]. 中国有色金属学报, 2019, 29: 1591
74 Huang B. Study on additive manufacturing technology based on the principle of stationary shoulder friction stir welding [D]. Nanchang: Nanchang Hangkong University, 2016
74 黄 斌. 基于静轴肩搅拌摩擦焊的增材制造技术研究 [D]. 南昌: 南昌航空大学, 2016
75 He C S, Wei J X, Li Y, et al. A cooling friction stir additive manufacturing device and method [P]. Chin. Pat, 201811509290.7, 2019
75 何长树, 韦景勋, 李 颖 等. 一种施加冷却的搅拌摩擦增材制造装置及方法 [P]. 中国专利, 201811509290.7, 2019)
76 Xu N, Wang H F, Jiang D, et al. A stirring tool for friction stir additive manufacturing [P]. Chin. Pat, 201922157857.5, 2020
76 许 诺, 汪洪峰, 姜 迪 等. 一种用于搅拌摩擦增材制造的搅拌头 [P]. 中国专利, 201922157857.5, 2020)
77 Zhang H J, Liu X, Kong X L, et al. A friction stir additive manufacturing method for preset heterogeneous metal interlayers [P]. Chin. Pat, 202110354228.0, 2021
77 张会杰, 刘 旭, 孔旭亮 等. 一种预置异质金属夹层的搅拌摩擦增材制造方法 [P]. 中国专利, 202110354228.0, 2021)
78 Dilip J J S, Rafi H K, Ram G D J. A new additive manufacturing process based on friction deposition [J]. Trans. Indian Inst. Met., 2011, 64: 27
doi: 10.1007/s12666-011-0005-9
79 Griffiths R J, Petersen D T, Garcia D, et al. Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy [J]. Appl. Sci., 2019, 9: 3486
doi: 10.3390/app9173486
80 Fu X R. Study on microstructure and properties of 2024 aluminum alloy by stationary shoulder frictional stir additive manufacturing [D]. Nanchang: Nanchang Hangkong University, 2018
80 傅徐荣. 2024铝合金静轴肩搅拌摩擦增材组织及性能研究 [D]. 南昌: 南昌航空大学, 2018
81 Gu T. Microstructure and properties of high strength aluminum alloy Al 2024 laser additive manufacturing [D]. Harbin: Harbin Institute of Technology, 2019
81 谷 涛. 高强度铝合金Al 2024激光增材制造组织与性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
82 Qi Z W, Qi B J, Cong B Q, et al. Microstructure and mechanical properties of wire + arc additively manufactured 2024 aluminum alloy components: As-deposited and post heat-treated [J]. J. Manuf. Process., 2019, 40: 27
doi: 10.1016/j.jmapro.2019.03.003
83 Wei J X. The microstructure and properties adjustment of friction stir additive manufactured build for 7N01 aluminum alloy [D]. Shenyang: Northeastern university, 2019
83 韦景勋. 7N01铝合金搅拌摩擦增材体显微组织与性能的控制 [D]. 沈阳: 东北大学, 2019
84 Wang N Q. Basic research on selective laser melting additive manufacturing process of NZ30K magnesium alloy [D]. Shanghai: Shanghai Jiao Tong University, 2020
84 王南清. NZ30K镁合金激光选区熔化增材制造成型工艺基础研究 [D]. 上海: 上海交通大学, 2020
85 Guo Y M. The laser additive manufacturing technology of aluminum alloy with melting wire [D]. Nanjing: Nanjing University of Science and Technology, 2018
85 郭一蒙. 铝合金激光熔丝增材制造工艺研究 [D]. 南京: 南京理工大学, 2018
86 Liang W Q, Ren X H, Yu Z T, et al. Microstructure and mechanical properties of wire arc additive manufacturing of AZ31 magnesium alloy [J/OL]. Mater. Sci. Technol.,
86 梁文奇, 任香会, 于振涛 等. 电弧增材制造AZ31镁合金组织与力学性能分析 [J/OL] 材料科学与工艺,
87 Zhou G S. Study on CMT arc additive manufacturing technology and microstructure and properties for 5556 aluminum alloy [D]. Shenyang: Shenyang University, 2021
87 周桂申. 5556铝合金CMT电弧增材制造技术及性能研究 [D]. 沈阳: 沈阳大学, 2021
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[10] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.