Please wait a minute...
金属学报  2023, Vol. 59 Issue (6): 777-786    DOI: 10.11900/0412.1961.2021.00315
  研究论文 本期目录 | 过刊浏览 |
低密度Ti2AlNb基合金热轧板微观组织的热稳定性
冯艾寒1, 陈强2, 王剑3, 王皞4, 曲寿江1(), 陈道伦5()
1同济大学 材料科学与工程学院 上海 200092
2西南技术工程研究所 重庆 400039
3宝钛集团有限公司 宝鸡 721014
4上海理工大学 材料与化学学院 增材制造研究院 上海 200093
5Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate
FENG Aihan1, CHEN Qiang2, WANG Jian3, WANG Hao4, QU Shoujiang1(), CHEN Daolun5()
1School of Materials Science and Engineering, Tongji University, Shanghai 200092, China
2Southwest Technology and Engineering Research Institute, Chongqing 400039, China
3BaoTi Group Co., Ltd., Baoji 721014, China
4Interdisciplinary Center for Additive Manufacturing, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
5Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
引用本文:

冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
Aihan FENG, Qiang CHEN, Jian WANG, Hao WANG, Shoujiang QU, Daolun CHEN. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. Acta Metall Sin, 2023, 59(6): 777-786.

全文: PDF(4075 KB)   HTML
摘要: 

采用OM、SEM、XRD和TEM研究了低密度Ti2AlNb基合金热轧板在600~1100℃保温12 h微观组织的热稳定性。结果表明,Ti2AlNb基合金原始态热轧板主要由α2、B2以及O相组成,颗粒状的α2相分布在B2相基体中。Ti2AlNb基合金热轧板600℃保温12 h,颗粒状的α2相分布在B2相基体中,B2相基体中分布着大量细小的O相板条。随着温度的升高,合金热轧板800~900℃保温12 h的微观组织由α2、B2以及O相三相构成,α2相颗粒逐渐球化,O相板条粗化并固溶于B2相基体中。当温度升高至950℃时,B2相基体中的O相板条消失。合金热轧板在950~1000℃保温12 h形成α2 + B2两相区,α2相颗粒球化并趋向于分布在B2相基体的晶界处。当温度升高至1100℃时,合金基体为B2单相,B2晶界处分布着极少量的残留α2相颗粒。Vickes显微硬度分布结果显示,随着温度的升高,合金板材在600℃时硬度达到峰值(509 HV),这与大量细小的O相板条有关。

关键词 Ti2AlNb基合金相变轧板微观组织热稳定性    
Abstract

Multielement and multiphase intermetallic alloys based on an ordered orthorhombic (O) phase Ti2AlNb, where the presence of a long-range order superlattice structure effectively impedes the movement of dislocations and high-temperature diffusion, are a class of highly promising lightweight high-temperature structural materials for aerospace applications due to their high specific strength and superior fracture toughness. Thermal stability of microstructures in the hot rolled sheet of a low-density Ti2AlNb-based alloy has been investigated in a temperature range from 600oC to 1100oC for 12 h via OM, SEM, XRD, and TEM/STEM. The results showed that the initial Ti2AlNb-based alloy hot rolled sheet consisted of α2, B2, and O phases. Furthermore, the Ti2AlNb-based alloy hot rolled sheet at 600oC for 12 h consisted of α2, B2, and O phases, where the particle shaped α2 phase was distributed in the B2 matrix, and lath-like O phase lay inbetween the α2 particles. The spheroidization of the α2 phase started to occur along with the coarsening and solutionizing of the lath O phase in the B2 matrix at a temperature between 800oC and 900oC for 12 h, while the hot rolled Ti2AlNb-based alloy plate was still composed of α2, B2, and O phases. When the temperature reached 950oC, the O phase disappeared in the B2 matrix. Only α2 + B2 two phases were present in the hot rolled Ti2AlNb-based alloy at 950-1000oC for 12 h, where the α2 phase was spheroidized and tended to distribute surrounding B2 grain boundaries. When the temperature rose to 1100oC, the alloy contained a B2 single phase with only some residual α2 phase. Moreover, the Vickers microhardness contour vs temperature plot revealed that a peak hardness of as high as 509 HV appeared at 600oC due to the presence of numerous fine O laths.

Key wordsTi2AlNb-based alloy    phase transformation    rolling sheet    microstructure    thermal stability
收稿日期: 2021-07-30     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2018YFB0704100);国家自然科学基金项目(51871168);西南技术工程研究所合作基金项目(HDHDW5902020102)
通讯作者: 曲寿江,qushoujiang@tongji.edu.cn,主要从事TiAl、Ti2AlNb基合金精密热成型及钛基合金增材制造的研究
陈道伦,dchen@torontomu.ca,主要从事先进材料和关键工程材料的变形、疲劳、断裂、焊接和连接的研究
Corresponding author: QU Shoujiang, associate professor, Tel:(021)39947690, E-mail: qushoujiang@tongji.edu.cn
CHEN Daolun, professor, Tel: +416-979-5000 (ext.556487), E-mail: dchen@torontomu.ca
作者简介: 冯艾寒,女,1974年,副教授
图1  Ti2AlNb基合金原始态热轧板显微组织和选区电子衍射(SAED)花样(a) OM image (b) SEM image (c) STEM image (d) TEM image(e-g) SAED patterns of points I (e), II (f), and III (g) in Fig.1d, respectively
图2  Ti2AlNb基合金热轧板在不同温度保温12 h水淬后的OM像
图3  Ti2AlNb基合金热轧板在不同温度保温12 h水淬后的SEM像
图4  Ti2AlNb基合金热轧板在不同温度保温12 h前后的XRD谱
图5  Ti2AlNb基合金热轧板600℃保温12 h水淬的TEM像、STEM像和SAED花样
PhaseOrientation relationshipRef.
B2/α2[11¯1]B2//[112¯0]a2, (011)B2//(0001)a2[31]
B2/O[1¯11]B2//[11¯0]O, (110)B2//(001)O[30,31]
α2/O[0001]a2//[001]O, (101¯0)a2//(110)O[1,3,8]
表1  Ti2AlNb基合金中α2、B2及O相之间的位向关系[1,3,8,30,31]
图6  Ti2AlNb基合金热轧板850℃保温12 h水淬的TEM像、STEM像和SAED花样
图7  Ti2AlNb基合金热轧板900℃保温12 h的TEM像和SAED花样
图8  Ti2AlNb基合金热轧板1000℃保温12 h水淬的TEM像、STEM像和SAED花样
图9  Ti2AlNb基合金热轧板Vickers硬度随热处理温度的变化
Heat treatmentPhase constituent
XRDSEMTEM
As-rolledB2 + O + α2B2 + O + α2B2 + α2
600oC, 12 h, WQB2 + O + α2B2 + O + α2B2 + O + α2
800oC, 12 h, WQB2 + O + α2B2 + O + α2-
850oC, 12 h, WQB2 + O + α2B2 + O + α2B2 + O + α2
900oC, 12 h, WQB2 + O + α2B2 + O + α2B2 + O + α2
950oC, 12 h, WQB2 + α2B2 + α2-
1000oC, 12 h, WQB2 + α2B2 + α2B2 + α2
1050oC, 12 h, WQB2 + α2B2 + α2-
1100oC, 12 h, WQB2 + α2B2 + α2-
表2  Ti2AlNb基合金热轧板不同温度热处理前后的相组成
1 Banerjee D, Gogia A K, Nandi T K, et al. A new ordered orthorhombic phase in a Ti3Al-Nb alloy [J]. Acta Metall., 1988, 36: 871
doi: 10.1016/0001-6160(88)90141-1
2 Banerjee D. The intermetallic Ti2AlNb [J]. Prog. Mater. Sci., 1997, 42: 135
doi: 10.1016/S0079-6425(97)00012-1
3 Qu S J, Feng A H, Shagiev M R, et al. Superplastic behavior of the fine-grained Ti-21Al-18Nb-1Mo-2V-0.3Si intermetallic alloy [J]. Lett. Mater., 2018, 8: 567
doi: 10.22226/2410-3535
4 Zhu H P, Qu S J, Qi G Y, et al. High temperature oxidation behavior of as-rolled Ti2AlNb-based alloy [J]. Chin. J. Rare Met., 2016, 40: 104
4 朱慧萍, 曲寿江, 祁广源 等. Ti2AlNb基合金轧板高温抗氧化性能研究 [J]. 稀有金属, 2016, 40: 104
5 Xiang J M, Mi G B, Qu S J, et al. Thermodynamic and microstructural study of Ti2AlNb oxides at 800oC [J]. Sci. Rep., 2018, 8: 12761
doi: 10.1038/s41598-018-31196-w pmid: 30143715
6 Zhang Y L, Feng A H, Qu S J, et al. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy [J]. J. Mater. Sci. Technol., 2020, 44: 140
doi: 10.1016/j.jmst.2020.01.032
7 Feng A H, Li B B, Shen J. Recent advances on Ti2AlNb-based alloys [J]. J. Mater. Metall., 2011, 10: 30
7 冯艾寒, 李渤渤, 沈 军. Ti2AlNb基合金的研究进展 [J]. 材料与冶金学报, 2011, 10: 30
8 Shen J, Feng A H. Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys [J]. Acta Metall. Sin., 2013, 49: 1286
doi: 10.3724/SP.J.1037.2013.00607
8 沈 军, 冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展 [J]. 金属学报, 2013, 49: 1286
9 Li Z J, Tian W, Li J W, et al. Application of Ti2AlNb alloy electron beam welding on aero-engine casing [J]. Gas Turbine Exp. Res., 2020, 33(3): 52
9 李祚军, 田 伟, 李晋炜 等. Ti2AlNb合金电子束焊接在航空发动机机匣中的应用 [J]. 燃气涡轮试验与研究, 2020, 33(3): 52
10 Zhang H Y, Yan N, Liang H Y, et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review [J]. J. Mater. Sci. Technol., 2021, 80: 203
doi: 10.1016/j.jmst.2020.11.022
11 Ravi C, Vajeeston P, Mathijaya S, et al. Electronic structure, phase stability, and cohesive properties of Ti2 XAl (X = Nb, V, Zr) [J]. Phys. Rev., 1999, 60B: 15683
12 Pathak A, Singh A K. A first principles study of Ti2AlNb intermetallic [J]. Solid State Commun., 2015, 204: 9
doi: 10.1016/j.ssc.2014.12.002
13 Morris M A, Morris D G. Strain localization, slip-band formation and twinning associated with deformation of a Ti-24at.%Al-11at.%Nb alloy [J]. Philos. Mag., 1991, 63A: 1175
14 Kazantseva N V, Demakov S L, Popov A A. Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. III. Formation of transformation twins upon the B2→Ophase transformation [J]. Phys. Met. Metallogr., 2007, 103: 378
doi: 10.1134/S0031918X07040102
15 Kazantseva N V, Demakov S L, Popov A A. Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. IV. Formation of the transformation twins upon the α2→O phase transformation [J]. Phys. Met. Metallogr., 2007, 103: 388
doi: 10.1134/S0031918X07040114
16 Liang X B, Zhou J J, Zhang J W, et al. High cycle fatigue at high temperatures of the lamellar microstructure of Ti-22Al-25Nb alloy [J]. Titanium Ind. Prog., 2019, 36(2): 20
16 梁晓波, 周俊吉, 张建伟 等. 板条组织Ti-22Al-25Nb合金高温高周疲劳行为 [J]. 钛工业进展, 2019, 36(2): 20
17 Luo C, Zhang Y, Wang X Y, et al. Effect of heat treatment on microstructure and properties of cast Ti-22Al-25Nb alloy [J]. Aerosp. Manuf. Technol., 2020, (2): 18
17 骆 晨, 张 寅, 王新英 等. 热处理对铸造Ti2AlNb合金组织和力学性能的影响 [J]. 航天制造技术, 2020, (2): 18
18 Li B B. Plate preparation, microstructure and mechanical properties of low-density Ti2AlNb-based alloys [D]. Harbin: Harbin Institute of Technology, 2011
18 李渤渤. 低密度Ti2AlNb基合金板材制备及组织与力学性能研究 [D] 哈尔滨: 哈尔滨工业大学, 2011
19 Chen Z. Research on microstructure and mechanical properties of Ti2AlNb-based alloy fabricated by multiple isothermal forging [D]. Harbin: Harbin Institute of Technology, 2013
19 陈 卓. Ti2AlNb基合金多向等温锻造组织与力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013
20 Li S Y. Phase transformation and superplasticity deformation mechanism in Ti2AlNb-based alloys [D]. Harbin: Harbin Institute of Technology, 2013
20 李少雨. Ti2AlNb基合金相变及超塑性变形机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013
21 Zhou Y, Cao J X, Huang X, et al. Microstructure evolution and comprehensive mechanical properties of β/B2 processed Ti-22Al-23Nb-2(Mo, Zr) alloy [J]. J. Aeronaut. Mater., 2020, 40(4): 25
21 周 毅, 曹京霞, 黄 旭 等. β/B2锻造Ti-22Al-23Nb-2(Mo, Zr)合金的组织演化与综合力学性能 [J]. 航空材料学报, 2020, 40(4): 25
22 Li J J, Zeng W D, Xue C. Effects of hot deformation parameters on lamellar microstructure evolution of Ti2AlNb based alloy [J]. Chin. J. Nonferrous Met., 2014, 24: 1998
22 李君珺, 曾卫东, 薛 晨. 热变形参数对Ti2AlNb基合金片层组织演变的影响 [J]. 中国有色金属学报, 2014, 24: 1998
23 Wang S L, Zeng W D, Ma X, et al. Effect of solution temperature on microstructure of Ti-22Al-25Nb alloy [J]. Mater. Heat Treat., 2009, 38(8): 106
23 王邵丽, 曾卫东, 马 雄 等. 固溶温度对Ti-22Al-25Nb合金微观组织的影响 [J]. 材料热处理技术, 2009, 38(8): 106
24 Boehlert C J, Majumdar B S, Seetharaman V, et al. Part I. The microstructural evolution in Ti-Al-Nb O + bcc orthorhombic alloys [J]. Metall. Mater. Trans., 1999, 30A: 2305
25 Boehlert C J. The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy [J]. J. Phase Equilib., 1999, 20: 101
doi: 10.1007/s11669-999-0007-z
26 Boehlert C J, Miracle D B. Part II. The creep behavior of Ti-Al-Nb O + bcc orthorhombic alloys [J]. Metall. Mater. Trans., 1999, 30A: 2349
27 Boehlert C J. Microstructure, creep, and tensile behavior of a Ti-12Al-38Nb (at.%) beta+orthorhombic alloy [J]. Mater. Sci. Eng., 1999, A267: 82
28 Boehlert C J. Part III. The tensile behavior of Ti-Al-Nb O + bcc orthorhombic alloys [J]. Metall. Mater. Trans., 2001, 32A: 1977
29 Lin P, He Z B, Yuan S J, et al. Instability of the O-phase in Ti-22Al-25Nb alloy during elevated-temperature deformation [J]. J. Alloys Compd., 2013, 578: 96
doi: 10.1016/j.jallcom.2013.05.018
30 Bendersky L A, Boettinger W J, Roytburd A. Coherent precipitates in the b.c.c./orthorhombic two-phase field of the Ti-Al-Nb system [J]. Acta Metall. Mater., 1991, 39: 1959
doi: 10.1016/0956-7151(91)90165-W
31 Muraleedharan K, Gogia A K, Nandy T K, et al. Transformations in a Ti-24Al-15Nb alloy: Part I. Phase equilibria and microstructure [J]. Metall. Trans., 1992, 23A: 401
32 Popov A A, Illarionov A G, Grib S V, et al. Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide [J]. Phys. Met. Metallogr., 2008, 106: 399
doi: 10.1134/S0031918X08100104
33 Kazantseva N V, Lepikhin S V. Study of the Ti-Al-Nb phase diagram [J]. Phys. Met. Metall., 2006, 102: 169
doi: 10.1134/S0031918X06080084
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[4] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[5] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[6] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[7] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[8] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[9] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[10] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[11] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[12] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[13] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[14] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[15] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.