Please wait a minute...
金属学报  2023, Vol. 59 Issue (3): 399-412    DOI: 10.11900/0412.1961.2022.00023
  研究论文 本期目录 | 过刊浏览 |
Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响
李民1,2, 王继杰1, 李昊泽2,3(), 邢炜伟2, 刘德壮2, 李奥迪2, 马颖澈2
1 沈阳航空航天大学 材料科学与工程学院 沈阳 110136
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3 太原科技大学 机械工程学院 太原 030024
Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel
LI Min1,2, WANG Jijie1, LI Haoze2,3(), XING Weiwei2, LIU Dezhuang2, LI Aodi2, MA Yingche2
1 College of Materials Science and Engineering, Shenyang Areospace University, Shenyang 110136, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
引用本文:

李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
Min LI, Jijie WANG, Haoze LI, Weiwei XING, Dezhuang LIU, Aodi LI, Yingche MA. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. Acta Metall Sin, 2023, 59(3): 399-412.

全文: PDF(6055 KB)   HTML
摘要: 

利用EPMA、EBSD、XRD、TEM和热压缩测试,研究了Y元素对无取向6.5%Si钢铸态组织、有序相、中温变形和软化机制的影响。结果表明,当Y含量为0.017%和0.15%时,钢液中形成高熔点Y2O3 + Y2O2S/Y2O2S-YP复合稀土化合物,促进异质形核。凝固末期,枝晶间形成Y2Fe14Si3化合物,凝固组织得到明显细化。铸锭的基体有序度与Y含量呈反比关系。500℃压缩实验结果表明,不同Y含量铸锭的塑性变形均由位错滑移机制主导。含Y试样峰值应力对应的临界应变降低,加工软化提前,加工硬化率下降,动态软化作用增强。热压缩试样的位错密度正比于Y含量,低基体有序度和高形变诱导无序作用是含Y试样动态软化作用增强的主要原因。

关键词 无取向6.5%Si钢Y热压缩微观组织有序度加工软化    
Abstract

With the rapid development of electric, electronics, and military industries, there is an urgent demand for high-performance electrical steel. Non-oriented 6.5%Si electrical steel is an advanced soft magnetic material that exhibits excellent high-frequency soft magnetic properties, such as low iron loss, high magnetic permeability, and near-zero magnetostriction, which attracts considerable attention and has broad application prospects in the high-frequency field. Microalloying of rare earth elements, including Ce, La, and Y, is known to improve the ductility of 6.5%Si electrical steel. However, there are relatively few studies on the enhancement mechanism of medium-temperature plasticity of 6.5%Si electrical steel by addition of Y. In this study, the effect of Y on the solidification microstructure, ordered phase, warm compression behavior, and softening mechanism of non-oriented 6.5%Si electrical steel was investigated by EPMA, EBSD, XRD, TEM, and hot compressive test. The results indicated that the addition of 0.017% and 0.15% of Y led to the formation of high-melting-point Y2O3 + Y2O2S/Y2O2S-YP compounds in the melt which effectively promoted heterogeneous nucleation. At the end of the solidification process, the interdendritic rare-earth compounds were identified as Y2Fe14Si3 and the solidification microstructure was obviously refined. In addition, with the increasing Y content, the ordered degree of the matrix decreased. The compression test at 500oC indicated that the deformation mechanisms of all the specimens were dominated by a dislocation slip. The critical strain corresponding to the peak stress of the specimens doped with Y decreased. The advancement of the work softening stage and reduction in the following work hardening rate suggested that the dynamic softening effect was enhanced in the specimens doped with Y. After deformation, the matrix was in a disordered state, however, the dislocation density in the matrix was directly proportional to the Y content. Eventually, the primary reason for the enhancement of the dynamic softening effect was attributed to the low ordered degree and high deformation-induced disordering of the matrix by addition of Y.

Key wordsnon-oriented 6.5%Si electrical steel    Y    warm deformation    microstructure    ordered degree    work softening
收稿日期: 2022-01-17     
ZTFLH:  TG11  
基金资助:国家自然科学基金项目(51801221)
作者简介: 李 民,男,1996年生,硕士生
SampleCSONPYSiFe
0Y0.0070< 0.0010.00050.00080.002< 0.00056.35Bal.
0.017Y0.0086< 0.0010.00060.00090.0020.0176.43Bal.
0.15Y0.0081< 0.0010.00050.00090.0020.156.50Bal.
表1  不同Y含量铸锭的化学成分 (mass fraction / %)
图1  0Y、0.017Y和0.15Y铸锭的宏观组织和SEM像
图2  0.017Y和0.15Y铸锭的SEM像和EPMA元素面分布图
SampleFeSiYOSP
0.017Y2.641.1730.6063.680.821.09
0.15Y18.402.1535.8528.7311.083.79
表2  铸锭晶内稀土化合物的EDS结果 (atomic fraction / %)
[uvw]s[uvw]nd[uvw]s / nmd[uvw]n / nmθ / (o)d[uvw]s·cosθ / nmδ
[001] δ - Fe[001]YP0.28450.282600.28450.67%
[1¯12] δ - Fe[1¯12]YP0.69690.692200.6969
[1¯10] δ - Fe[1¯10]YP0.40230.399700.4023
表3  晶格错配度计算结果
图3  0.017Y铸锭晶界稀土化合物的SEM像、Kikuchi花样和EDS元素分布图
图4  0.15Y铸锭晶界稀土化合物的SEM像、Kikuchi花样和EDS元素分布图
SamplePositionAtomic fraction / %
FeSiY
0.017YMatrix88.1611.840
Rare-earth compound77.0115.337.66
0.15YMatrix87.9612.040
Rare-earth compound75.6416.278.09
表4  图3和4中晶界稀土化合物的EDS分析结果
图5  添加Y的无取向6.5%Si钢凝固过程示意图
图6  不同Y含量铸锭的XRD谱
图7  不同Y含量铸态试样沿[001]晶带轴的SAED花样
图8  不同Y含量铸态试样在500℃、1 s-1和40%压下量压缩的真应力-真应变曲线
图9  不同Y含量铸态试样500℃压缩的加工硬化率-真应变(θ-ε)曲线、峰值应力和相应的临界应变
图10  3种铸态试样500℃压缩后的宏观照片
图11  不同Y含量铸态试样500℃压缩后纵剖面组织的OM像和裂纹统计结果
图12  不同Y含量铸态试样500℃压缩后的EBSD反极图、Σ3-60°<111>特殊晶界分布图及元素面扫描图
图13  不同Y含量铸态试样500℃压缩后纵剖面的EBSD晶粒取向图和局部取向差(LM)图
图14  不同Y含量铸态试样500℃压缩后芯部晶粒的LM分布图和对应的几何必须位错(GND)密度
图15  不同Y含量铸态试样500℃压缩后的TEM明场像和对应的SAED花样
1 Ouyang G Y, Chen X, Liang Y F, et al. Review of Fe-6.5 wt%Si high silicon steel—A promising soft magnetic material for sub-kHz application [J]. J. Magn. Magn. Mater., 2019, 481: 234
doi: 10.1016/j.jmmm.2019.02.089
2 Li H Z, Liu H T, Liu Z Y, et al. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt. % Si electrical steel doped with cerium [J]. Mater. Charact., 2015, 103: 101
doi: 10.1016/j.matchar.2015.03.024
3 Li H Z, Liu H T, Wang X L, et al. Effect of cerium on the as-cast microstructure and tensile ductility of the twin-roll casting Fe-6.5wt. % Si alloy [J]. Mater. Lett., 2016, 165: 5
doi: 10.1016/j.matlet.2015.11.100
4 Yu X, Zhang Z H, Xie J X. Effects of rare earth elements doping on ordered structures and ductility improvement of Fe-6.5 wt%Si alloy [J]. Mater. Lett., 2016, 184: 294
doi: 10.1016/j.matlet.2016.08.074
5 Yu X, Zhang Z H, Xie J X. Microstructure, ordered structure and warm tensile ductility of Fe-6.5% Si alloy with various Ce content [J]. Acta Metall. Sin., 2017, 53: 927
5 于 宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5% Si合金的组织、有序结构和中温拉伸塑性 [J]. 金属学报, 2017, 53: 927
6 Cai G J, Wang Y Z, Huang Y R, et al. Effect of Ce on bending properties and soft magnetic properties of Fe-6.9wt% Si steel [J]. Mater. Sci. Technol., 2020, 28(4): 16
6 蔡国君, 王粤竹, 黄艳茹 等. 稀土Ce对Fe-6.9%Si钢的弯曲性能与软磁性能的影响 [J]. 材料科学与工艺, 2020, 28(4): 16
7 Cai G J, Yang Y, Huang Y R, et al. The significance of Ce on hot compression deformation and mechanical behavior of Fe-6.9wt%Si alloy: Decrease of order degree and transformation of dislocations [J]. Mater. Charact., 2020, 163: 110220
doi: 10.1016/j.matchar.2020.110220
8 Liu D F, Qin J, Zhang Y H, et al. Effect of yttrium addition on the hot deformation behavior of Fe-6.5wt% Si alloy [J]. Mater. Sci. Eng., 2020, A797: 140238
9 Zhao H B, Qin J, Liu D F, et al. Effect of rare earth yttrium on the tensile properties of 6.5%Si steel [J]. Nonferrous Met. Sci. Eng., 2021, 12: 131
9 赵海斌, 秦 镜, 刘德福 等. 稀土Y对6.5%Si高硅钢拉伸性能的影响 [J]. 有色金属科学与工程, 2021, 12: 131
10 Zhou Q Y, Qin J, Liu D F, et al. Effects of rare earth Y on microstructure and texture evolution of 6.5 wt. % Si high-silicon steel during hot and warm rolling [J]. J. Iron Steel Res., 2021, 33: 600
10 周情耀, 秦 镜, 刘德福 等. 稀土Y对6.5%Si高硅钢热轧和温轧组织织构演变的影响 [J]. 钢铁研究学报, 2021, 33: 600
11 Yu H Y, Ming K S, Wu H C, et al. Ordering suppression and excellent ductility in soft-magnetic Fe-6.5wt%Si sheet by Hf addition [J]. J. Alloys Compd., 2018, 766: 186
doi: 10.1016/j.jallcom.2018.06.343
12 Du T. Thermodynamics of rare earth elements in iron-base solutions [J]. J. Iron Steel Res., 1994, 6(3): 6
12 杜 挺. 稀土元素在铁基溶液中的热力学 [J]. 钢铁研究学报, 1994, 6(3): 6
13 Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1: 1987
14 Villars P, Okamoto H. Fe-Si-Y isothermal section of ternary phase diagram [DB/OL].
15 Lin C N, Sun Y X, Liu Z X, et al. Magnetic properties of Si-substituted Y2Fe17 [J]. Solid State Commun., 1992, 81: 299
doi: 10.1016/0038-1098(92)90813-O
16 Cheng Z Y, Liu J, Xiang Z D, et al. Effect of Cu addition on microstructure, texture and magnetic properties of 6.5wt% Si electrical steel [J]. J. Magn. Magn. Mater., 2021, 519: 167471
doi: 10.1016/j.jmmm.2020.167471
17 Li L F, Xing Z S. Solubilities of Ce, Nd and Y in α-Fe [J]. Acta Metall. Sin. (Engl. Lett.), 1993, 6: 309
18 Ji Y P, Zhang M X, Ren H P. Roles of lanthanum and cerium in grain refinement of steels during solidification [J]. Metals, 2018, 8: 884
doi: 10.3390/met8110884
19 Qian M, Cao P, Easton M A, et al. An analytical model for constitutional supercooling-driven grain formation and grain size prediction [J]. Acta Mater., 2010, 58: 3262
doi: 10.1016/j.actamat.2010.01.052
20 Shi X J, Liang Y F, Liu B B, et al. Warm deformation behavior and work-softening mechanism of Fe-6.5wt. %Si alloy [J]. J. Iron Steel Res. Int., 2020, 27: 342
doi: 10.1007/s42243-019-00325-8
21 Cai G J, Li C S, Cai B, et al. Effect of rolling reduction on antiphase domains, grain boundary character distribution and plastic deformation of Fe-6.5wt%Si alloy [J]. Mater. Lett., 2019, 238: 249
doi: 10.1016/j.matlet.2018.11.167
22 Swann P R, Grånäs L, Lehtinen B. The B2 and D03 ordering reactions in iron-silicon alloys in the vicinity of the curie temperature [J]. Met. Sci., 1975, 9: 90
doi: 10.1179/030634575790445279
23 Wen S B, Han C Y, Zhang B, et al. Flow behavior characteristics and processing map of Fe-6.5wt. %Si alloys during hot compression [J]. Metals, 2018, 8: 186
doi: 10.3390/met8030186
24 Fu H D, Zhang Z H, Jiang Y B, et al. Applying the grain orientation dependence of deformation twinning to improve the deformation properties of an Fe-6.5wt%Si alloy [J]. J. Alloys Compd., 2016, 689: 307
doi: 10.1016/j.jallcom.2016.07.319
25 Xie J X, Fu H D, Zhang Z H, et al. Deformation twinning in an Fe-6.5 wt. % Si alloy with columnar grains during intermediate temperature compression [J]. Mater. Sci. Eng., 2012, A538: 315
26 Xie J X, Fu H D, Zhang Z H, et al. Deformation twinning feature and its effects on significant enhancement of tensile ductility in columnar-grained Fe-6.5wt. %Si alloy at intermediate temperatures [J]. Intermetallics, 2012, 23: 20
doi: 10.1016/j.intermet.2011.12.011
27 Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
28 Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
doi: 10.1016/S0022-5096(98)00103-3
29 Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
doi: 10.1016/S1359-6462(02)00335-4
30 Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Mater. Sci. Eng., 2010, A527: 2738
31 Mo Y K, Zhang Z H, Fu H D, et al. Effects of deformation temperature on the microstructure, ordering and mechanical properties of Fe-6.5wt% Si alloy with columnar grains [J]. Mater. Sci. Eng., 2014, A594: 111
32 Li H, Liang Y F, Yang W, et al. Disordering induced work softening of Fe-6.5wt%Si alloy during warm deformation [J]. Mater. Sci. Eng., 2015, A628: 262
33 Wang X L, Li H Z, Zhang W N, et al. The work softening by deformation-induced disordering and cold rolling of 6.5 wt pct Si steel thin sheets [J]. Metall. Mater. Trans., 2016, 47A: 4659
34 Raviprasad K, Aoki K, Chattopadhyay K. The nature of dislocations and effect of order in rapidly solidified Fe-(5.5-7.5)wt. %Si alloys [J]. Mater. Sci. Eng., 1993, A172: 125
35 Mao W M, Yang P. Influence of structure transition on plastic behaviors of iron based ordered alloys [J]. Sci. China Technol. Sci., 2012, 55: 2920
doi: 10.1007/s11431-012-4947-x
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[5] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[6] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[9] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[10] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[11] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[12] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[13] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[14] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[15] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.