Please wait a minute...
金属学报  2021, Vol. 57 Issue (5): 651-664    DOI: 10.11900/0412.1961.2020.00131
  研究论文 本期目录 | 过刊浏览 |
用于燃料电池双极板的不锈钢成分优化
黄一川1, 王清1, 张爽2, 董闯1,2(), 吴爱民1, 林国强1
1.大连理工大学 三束材料改性教育部重点实验室 大连 116024
2.大连交通大学 材料科学与工程学院 大连 116028
Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates
HUANG Yichuan1, WANG Qing1, ZHANG Shuang2, DONG Chuang1,2(), WU Aimin1, LIN Guoqiang1
1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
2.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
引用本文:

黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
Yichuan HUANG, Qing WANG, Shuang ZHANG, Chuang DONG, Aimin WU, Guoqiang LIN. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. Acta Metall Sin, 2021, 57(5): 651-664.

全文: PDF(9429 KB)   HTML
摘要: 

利用团簇式方法,通过对Fe-Cr-Ni合金进行成分精修,在保持合金良好耐蚀性的同时,提升不锈钢的导电性。首先,解析316L不锈钢的成分,获得其Fe-Cr-Ni基础成分的理想团簇式[Ni-Fe11Ni1]Cr3,进而,固定Cr3,将Ni含量(质量分数)从6.63%变到32.74%,得到符合团簇成分通式[Ni-Fe13-xNix-1]Cr3 = Fe13-xNixCr3 (x = 1~5)的合金成分。利用真空电弧熔炼并铜模浇注成直径10 mm试棒,随后进行固溶及水淬处理。实验结果表明,在模拟双极板服役环境(0.5 mol/L H2SO4 + 2 × 10-6 HF)下,随着Ni含量提高,在酸钝化后,自腐蚀电流密度由14.39 μA/cm2降低至1.10 μA/cm2,在电化学氮化后,由1.03 μA/cm2降低至0.29 μA/cm2。这些数据均优于参照合金316L不锈钢(分别为7.51和0.47 μA/cm2),甚至低于0.5 μA/cm2的目前产业目标。在0.064 MPa压力下接触电阻逐渐减小(酸钝化后,从1.16 Ω·cm2减至0.98 Ω·cm2,电化学氮化后,从1.07 Ω·cm2减至1.03 Ω·cm2),优于316L不锈钢的1.1 Ω·cm2。上述实验结果表明,Ni含量的持续添加能够提升合金作为双极板的使役性能,最佳的不锈钢成分配方为 [Ni-Fe10Ni2]Cr3,可以作为替代316L的新型不锈钢。电化学氮化处理方法在提升合金耐蚀性的同时,保持了相当高的接触电阻,是较好的不锈钢双极板表面处理方法。

关键词 不锈钢双极板酸钝化电化学氮化耐蚀性界面接触电阻钝化膜    
Abstract

316 stainless steel is the first choice for bipolar plate material in fuel cells; however, it suffers from passivation-induced corrosion and conductivity deficiencies. In this work, Fe-Cr-Ni alloy was refined using the cluster-plus-glue-atom model to obtain stainless steels with balanced corrosion and electrical performances. For austenite 316L stainless steel, the unit is described as a 16-atom cluster formula [Ni-Fe11Ni1]Cr3. By fixing the three atoms of a glue, Cr3 is required to achieve sufficient corrosion resistance, and new compositions with varying Ni contents are designed following [Ni-Fe13-xNix-1]Cr3 = Fe13-xNixCr3 (x = 1-5). The designed alloys were arc melted at least five times, copper-mold suction casted into 10-mm cylindrical rods under an argon atmosphere, homogenized at 1150oC for 2 h, and water quenched. Under the simulated bipolar plate service environment (0.5 mol/L H2SO4 + 2 × 10-6 HF aqueous solution), as the Ni content increases, the self-corrosion current density decreases to 1.10 and 0.29 μA/cm2 after acid passivation and electrochemical nitridation, respectively. These values are well below compared to the commercial 316L stainless steel (7.51 and 0.47 μA/cm2) and close to the current industry target (0.5 μA/cm2) for bipolar plates. At the same time, the contact electrical resistance (under 0.064 MPa pressure) decreases to 0.98 and 1.03 Ω·cm2 after acid passivation and electrochemical nitridation, respectively, which is superior to the 316L stainless steel (1.1 Ω·cm2). Thus, optimal alloy composition [Ni-Fe10Ni2]Cr3 can be used as the right substrate material of the bipolar plate instead of the 316L stainless steel. The electrochemical nitridation method is the proper surface treatment method for stainless steel bipolar plates, and this method improves the alloy's corrosion resistance while maintaining the same level of contact resistance.

Key wordsstainless steel    bipolar plate    acid passivation    electrochemical nitridation    corrosion resistance    interfacial contact resistance    passivation film
收稿日期: 2020-04-27     
ZTFLH:  TM911.4  
基金资助:国家重点研发计划项目(2016YFB0701401)
作者简介: 黄一川,男,1996年生,硕士生
图1  奥氏体相结构中的立方八面体团簇构型
Cluster formulaAtomic formulaNominal compositionMeasured compositionNieqCreq
[Ni-Fe12]Cr3Fe12Ni12Cr3Fe-6.63Ni-17.63CrFe-6.74Ni-17.65Cr6.6317.63
[Ni-Fe11.5Ni0.5]Cr3Fe11.5Ni1.5Cr3Fe-9.93Ni-17.6CrFe-10.05Ni-17.68Cr9.9317.60
[Ni-Fe11Ni]Cr3Fe11Ni2Cr3Fe-13.22Ni-17.57CrFe-13.46Ni-17.74Cr13.2217.57
[Ni-Fe10.5Ni1.5]Cr3Fe10.5Ni2.5Cr3Fe-16.5Ni-17.54CrFe-16.73Ni-17.73Cr16.5017.54
[Ni-Fe10Ni2]Cr3Fe10Ni3Cr3Fe-19.77Ni-17.52CrFe-20.03Ni-17.73Cr19.7717.52
[Ni-Fe9Ni3]Cr3Fe9Ni4Cr3Fe-26.28Ni-17.46CrFe-26.50Ni-17.70Cr26.2817.46
[Ni-Fe8Ni4]Cr3Fe8Ni5Cr3Fe-32.74Ni-17.40CrFe-32.87Ni-17.69Cr32.7417.40
[Ni-Fe11Ni1]-Fe11Ni2Cr2.8Mo0.2Fe-14Ni-16.8Cr-2.3MoFe-12.59Ni-17.43Cr-2.00Mo-15.9019.58
Mo0.2Cr2.9 (316L)1.15Mn-0.03Cu-0.01S-0.02P-0.52Si(including(including
C, Mn)Mo, Si)
表1  基于团簇式[Ni-Fe13-xNix-1]Cr3设计的不锈钢成分,以及参照合金316L的成分式及团簇式 (mass fraction / %)
图2  Schaeffler组织图及本工作涉及的合金位置
图3  经固溶加水淬处理后设计合金的XRD谱
图4  [Ni-Fe13-xNix-1]Cr3合金经固溶加水淬处理后显微组织的OM像(a) [Ni-Fe12]Cr3 (b) [Ni-Fe11.5Ni0.5]Cr3 (c) [Ni-Fe11Ni]Cr3 (d) [Ni-Fe10.5Ni1.5]Cr3(e) [Ni-Fe10Ni2]Cr3 (f) [Ni-Fe9Ni3]Cr3 (g) [Ni-Fe8Ni4]Cr3
图5  设计合金及316L不锈钢的硬度随Ni当量的变化情况
图6  钝化处理前后的设计合金及参照合金开路电位-时间曲线
图7  设计合金与316L不锈钢经酸钝化处理前后在0.5 mol/L H2SO4 + 2 × 10-6 HF水溶液中的动电位极化曲线
ClusterBefore passivationAfter passivation
Ecorr / mVicorr / (μA·cm-2)Ecorr / mVicorr / (μA·cm-2)
[Ni-Fe12]Cr3-456.64138.15-287.1814.39
[Ni-Fe11.5Ni0.5]Cr3-392.75166.39-251.0410.59
[Ni-Fe11Ni]Cr3-303.94129.03-228.727.16
[Ni-Fe10.5Ni1.5]Cr3-270.71109.26-227.144.09
[Ni-Fe10Ni2]Cr3-265.21130.25-224.981.68
[Ni-Fe9Ni3]Cr3-262.08111.49-227.632.22
[Ni-Fe8Ni4]Cr3-230.2675.60-219.291.10
[Ni-Fe11Ni1] Mo0.2Cr2.9(316L)-291.0778.28-264.477.51
表2  酸钝化处理前后合金的自腐蚀电位(Ecorr)和自腐蚀电流密度(icorr)
图8  合金酸钝化处理后的自腐蚀电位与自腐蚀电流密度随Ni当量的变化情况
图9  酸钝化后合金的Mott-Schottky曲线
图10  酸钝化后载流子浓度随Ni当量的变化情况
Cluster

②: Nd

1023 cm-3

③: Na

1023 cm-3

[Ni-Fe12]Cr30.910.90
[Ni-Fe11.5Ni0.5]Cr32.381.86
[Ni-Fe11Ni]Cr32.471.96
[Ni-Fe10.5Ni1.5]Cr32.502.07
[Ni-Fe10Ni2]Cr32.542.15
[Ni-Fe9Ni3]Cr32.592.21
[Ni-Fe8Ni4]Cr32.692.23
[Ni-Fe11Ni1] Mo0.2Cr2.9 (316L)0.780.85
表3  酸钝化后设计合金的载流子浓度(施主和受主载流子浓度Nd和Na分别拟合自图9的②和③区)
Clusterδsc / 10-6 cm
[Ni-Fe12]Cr32.86
[Ni-Fe11.5Ni0.5]Cr31.95
[Ni-Fe11Ni]Cr31.83
[Ni-Fe10.5Ni1.5]Cr31.79
[Ni-Fe10Ni2]Cr31.77
[Ni-Fe9Ni3]Cr31.75
[Ni-Fe8Ni4]Cr31.75
[Ni-Fe11Ni1] Mo0.2Cr2.9(316L)2.89
表4  酸钝化后合金的空间电荷层厚度(δsc)
图11  电化学氮化前后合金开路电位-时间曲线
图12  设计合金与316L不锈钢经电化学氮化处理前后在0.5 mol/L H2SO4 + 2 × 10-6 HF水溶液中的动电位极化曲线
ClusterBefore passivationAfter passivation
Ecorr / mVicorr / (μA·cm-2)Ecorr / mVicorr / (μA·cm-2)
[Ni-Fe12]Cr3-456.64138.15-273.801.03
[Ni-Fe11.5Ni0.5]Cr3-392.75166.391.590.48
[Ni-Fe11Ni]Cr3-303.94129.0330.770.48
[Ni-Fe10.5Ni1.5]Cr3-270.71109.2642.170.45
[Ni-Fe10Ni2]Cr3-265.21130.2592.220.43
[Ni-Fe9Ni3]Cr3-262.08111.4978.410.28
[Ni-Fe8Ni4]Cr3-230.2675.60134.230.29
[Ni-Fe11Ni1] Mo0.2Cr2.9 (316L)-291.0778.2819.000.47
表5  电化学氮化前后合金的自腐蚀电位和自腐蚀电流密度
图13  电化学氮化处理后合金的自腐蚀电位与自腐蚀电流密度随Ni当量的变化情况
图14  电化学氮化后合金的Mott-Schottky曲线
Cluster

②: Nd

1021 cm-3

③: Na

1021 cm-3

[Ni-Fe12]Cr30.941.02
[Ni-Fe11.5Ni0.5]Cr31.001.08
[Ni-Fe11Ni]Cr31.011.08
[Ni-Fe10.5Ni1.5]Cr31.051.05
[Ni-Fe10Ni2]Cr31.031.18
[Ni-Fe9Ni3]Cr31.051.13
[Ni-Fe8Ni4]Cr31.251.37
[Ni-Fe11Ni1] Mo0.2Cr2.9 (316L)1.031.16
表6  电化学氮化后合金的载流子浓度
Clusterδsc / 10-6 cm
[Ni-Fe12]Cr39.26
[Ni-Fe11.5Ni0.5]Cr39.13
[Ni-Fe11Ni]Cr39.06
[Ni-Fe10.5Ni1.5]Cr39.03
[Ni-Fe10Ni2]Cr38.96
[Ni-Fe9Ni3]Cr38.77
[Ni-Fe8Ni4]Cr38.05
[Ni-Fe11Ni1] Mo0.2Cr2.9(316L)8.91
表7  电化学氮化后合金空间电荷层厚度
ClusterPassivation methodICR / (Ω·cm2) (0.064 MPa)
BeforeAfter
[Ni-Fe12]Cr3Acid passivation0.261.16
[Ni-Fe11.5Ni0.5]Cr3Acid passivation0.271.12
[Ni-Fe11Ni]Cr3Acid passivation0.411.10
[Ni-Fe10.5Ni1.5]Cr3Acid passivation0.461.04
Electrochemical nitriding0.461.07
[Ni-Fe10Ni2]Cr3Acid passivation0.510.99
Electrochemical nitriding0.511.03
[Ni-Fe9Ni3]Cr3Acid passivation0.490.98
[Ni-Fe8Ni4]Cr3Acid passivation0.500.98
表8  酸钝化和电化学氮化后设计合金的界面接触电阻
图15  酸钝化后设计合金界面接触电阻随Ni当量的变化情况
1 Huang N B, Yi B L, Hou M, et al. Review on thin metal bipolar plates for PEMFC [J]. Prog. Chem., 2005, 17: 963
1 黄乃宝, 衣宝廉, 侯 明等. PEMFC薄层金属双极板研究进展 [J]. 化学进展, 2005, 17: 963
2 Li J C, Wang Q, Jiang R, et al. Research progress of bipolar plate material for proton exchange membrane fuel cells [J]. Mater. Rev., 2018, 32: 2584
2 李俊超, 王 清, 蒋 锐等. 质子交换膜燃料电池双极板材料研究进展 [J]. 材料导报, 2018, 32: 2584
3 Wang H, Turner J A. Reviewing metallic PEMFC bipolar plates [J]. Fuel Cells, 2010, 10: 510
4 Yang L J, Wei H J, Zhu L, et al. Present research state and prospects for bipolar plates of proton exchange membrane fuel cells [J]. Met. Funct. Mater., 2009, 16(5): 50
4 杨丽军, 尉海军, 朱 磊等. 质子交换膜燃料电池双极板的研究现状及展望 [J]. 金属功能材料, 2009, 16(5): 50
5 Matsuura T, Kato M, Hori M. Study on metallic bipolar plate for proton exchange membrane fuel cell [J]. J. Power Sources, 2006, 161: 74
6 Wang H L, Sweikart M A, Turner J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells [J]. J. Power Sources, 2003, 115: 243
7 Jannat S, Rashtchi H, Atapour M, et al. Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells [J]. J. Power Sources, 2019, 435: 226818
8 Hentall P L, Lakeman J B, Mepsted G O, et al. New materials for polymer electrolyte membrane fuel cell current collectors [J]. J. Power Sources, 1999, 80: 235
9 Wang S L, Hou M, Zhao Q, et al. Ti/(Ti, Cr)N/CrN multilayer coated 316L stainless steel by arc ion plating as bipolar plates for proton exchange membrane fuel cells [J]. J. Energy Chem., 2017, 26: 168
10 Wu A M, Hao K G, Wang M C, et al. Fuel cell metal bipolar plate surface modification material technology: From basic material research to application technology development [A]. Abstracts of TFC' National Symposium on Thin Film Technology [C]. Hefei, China Academic Journal Electronic Pubishing House, 2017: 68
10 吴爱民, 郝凯歌, 王明超等. 燃料电池金属双极板表面改性材料工艺技术: 从基础材料研究到应用技术开发 [A]. TFC’17全国薄膜技术学术研讨会论文摘要集 [C]. 合肥, 中国学术期刊电子杂志社, 2017: 68
11 Song Y, Zhang C, Ling C, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell [J]. Int. J. Hydrogen Energy, 2020, 45: 29832
12 André J, Antoni L, Petit J P, et al. Electrical contact resistance between stainless steel bipolar plate and carbon felt in PEFC: A comprehensive study [J]. Int. J. Hydrogen Energy, 2009, 34: 3125
13 Hermann A, Chaudhuri T, Spagnol P. Bipolar plates for PEM fuel cells: A review [J]. Int. J. Hydrogen Energy, 2005, 30: 1297
14 Davies D P, Adcock P L, Turpin M, et al. Bipolar plate materials for solid polymer fuel cells [J]. J. Appl. Electrochem., 2000, 30: 101
15 Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design [J]. Acta Metall. Sin., 2018, 54: 293
15 董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计 [J]. 金属学报, 2018, 54: 293
16 Jiang B B, Wang Q, Dong C. A cluster-formula composition design approach based on the local short-range order in solid solution structure [J]. Acta Phys. Sin., 2017, 66: 026102
16 姜贝贝, 王 清, 董 闯. 基于固溶体短程序结构的团簇式合金成分设计方法 [J]. 物理学报, 2017, 66: 026102
17 Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses [J]. J. Phys., 2007, 40D: R273
18 Li Z, Zhang R Q, Zha Q F, et al. Composition design of superhigh strength maraging stainless steels using a cluster model [J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 35
19 Schaeffler A L. Constitution diagram for stainless steel weld metal [J]. Met. Prog., 1949, 56: 680
20 Wang Q, Zha Q F, Liu E X, et al. Composition design of high-strength martensitic precipitation hardening stainless steels based on a cluster model [J]. Acta Metall. Sin., 2012, 48: 1201
20 王 清, 查钱锋, 刘恩雪等. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计 [J]. 金属学报, 2012, 48: 1201
21 Lee S, Lee C Y, Lee Y K. Schaeffler diagram for high Mn steels [J]. J. Alloys Compd., 2015, 628: 46
22 Wang H L, Sweikart M A, Turner J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells [J]. J. Power Sources, 2003, 115: 243
23 Lizlovs E A, Bond A P. Anodic polarization of some ferritic stainless steels in chloride media [J]. J. Electrochem. Soc., 1969, 116: 574
24 Alves V A, Brett C M A. Characterisation of passive films formed on mild steels in bicarbonate solution by EIS [J]. Electrochim. Acta, 2002, 47: 2081
25 Chen H Y. Electrochemical nitridation of 316L stainless steel for PEMFC bipolar plates [D]. Tainan: National Cheng Kung University, 2013
25 陈澔瑜. 以电化学氮化法改质之316L不锈钢应用于PEMFC双极板 [D]. 台南: 成功大学, 2013
26 Dong Z H, Zhou T, Liu J, et al. Performance of surface chromizing layer on 316L stainless steel for proton exchange membrane fuel cell bipolar plates [J]. Int. J. Hydrogen Energy, 2019, 44: 22110
27 Zhang M, Wu B, Lin G Q, et al. Arc ion plated Cr/CrN/Cr multilayers on 316L stainless steel as bipolar plates for polymer electrolyte membrane fuel cells [J]. J. Power Sources, 2011, 196: 3249
28 Tian R J. Chromium nitride/Cr coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cell [J]. J. Power Sources, 2011, 196: 1258
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[4] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[5] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[6] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[7] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[8] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[9] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[10] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[11] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[12] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[13] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[14] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[15] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.