Please wait a minute...
金属学报  2021, Vol. 57 Issue (1): 82-94    DOI: 10.11900/0412.1961.2020.00109
  研究论文 本期目录 | 过刊浏览 |
高温时效处理对S31042耐热钢组织和蠕变性能的影响
郭倩颖1, 李彦默2, 陈斌2, 丁然1, 余黎明1, 刘永长1()
1.天津大学 材料科学与工程学院 水利工程仿真与安全国家重点实验室 天津 300354
2.中国船舶集团有限公司 第七二五研究所 洛阳 471023
Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel
GUO Qianying1, LI Yanmo2, CHEN Bin2, DING Ran1, YU Liming1, LIU Yongchang1()
1.State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
2.Luoyang Ship Material Research Institute, Luoyang 471023, China
引用本文:

郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
Qianying GUO, Yanmo LI, Bin CHEN, Ran DING, Liming YU, Yongchang LIU. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. Acta Metall Sin, 2021, 57(1): 82-94.

全文: PDF(40816 KB)   HTML
摘要: 

以S31042奥氏体耐热钢为研究对象,采用短时高温时效处理后在700℃下对其进行长期蠕变性能测试。通过OM、SEM和TEM等手段表征了S31042钢蠕变过程析出相的类型和演化规律,并利用蠕变实验分析了高温时效处理对S31042钢高温性能的影响。结果表明,经1050℃时效10 h处理后,S31042钢组织中析出大量尺寸在100 nm左右的Z相,降低了固溶态S31042钢中合金元素Cr和Nb的过饱和度,减小了M23C6相的形核驱动力,将蠕变过程晶界上析出M23C6相的形态由连续的链状调控为断续的短棒状。短棒状M23C6相的形成能够在不影响材料塑性的前提下,增大晶界滑动的阻力,改善材料的持久塑性。

关键词 S31042钢时效蠕变析出相高温性能    
Abstract

S31042 steel is a typical 25Cr-20Ni-type austenitic heat-resistant steel with excellent oxidation and corrosion resistance, and its creep rupture strength can be improved by the addition of Nb and N. This austenitic steel is widely used in superheater and reheater in ultrasupercritical power plants. At high temperatures, its performance is associated with the formation and evolution of Z, MX, and M23C6 phases. Till date, few studies have addressed the precipitation behavior of the Z phase in austenitic steel and the reinforcing mechanism of different M23C6 phases remains unclear. To clarify this, the ageing treatment of S31042 steel was performed at 1050oC, and the evolution behavior, thermal stability, and strengthening mechanism of the precipitates during creep tests were investigated. Furthermore, the relation between precipitate evolution and high-temperature performance was elucidated via OM, SEM, TEM, and creep tests. The supersaturation degree of the alloying components in solution-treated S31042 steel decreased after ageing at 1050oC and the driving force for M23C6 phase formation became smaller, resulting in a discontinuous distribution of the rod-like M23C6 phase along the austenite grain boundaries during the creep tests. At high stress levels, this discontinuous distribution of the rod-like M23C6 phase along the austenite grain boundaries increased the resistance to grain boundary sliding without changing the ductility, thus improving the rupture ductility of the steel. At low stress levels, the strengthening effects of the M23C6 phase discontinuously distributed along the austenite grain boundaries in aged steel were not as strong as those in solution-treated steel.

Key wordsS31042 steel    ageing    creep rupture    precipitate    high-temperature performance
收稿日期: 2020-04-02     
ZTFLH:  TG132.33  
基金资助:国家自然科学基金项目(U1660201)
作者简介: 郭倩颖,女,1987年生,博士生
图1  固溶态和时效态S31042钢样品显微组织的OM像、SEM像和EDS分析
图2  固溶态和时效态S31042钢样品中析出相的TEM像及EDS
图3  固溶态和时效态S31042钢700℃、200 MPa蠕变样品中晶内析出相的TEM像、HRTEM像及SAED花样
图4  固溶态和时效态S31042钢经700℃、200 MPa不同时长蠕变实验后晶内析出相的SEM像
图5  固溶态S31042钢经700℃、200 MPa蠕变505 h后晶界析出相的TEM像及SAED花样
图6  时效态S31042钢经700℃、200 MPa蠕变354 h后晶界析出相的TEM像及SAED花样
图7  固溶态和时效态S31042钢经700℃、200 MPa不同时长蠕变实验后晶界析出相的SEM像
图8  固溶态和时效态S31042钢样品在700℃不同应力条件下的蠕变曲线及蠕变应力-断裂时间关系
图9  固溶态和时效态S31042钢在不同应力条件下蠕变试样的断口形貌
图10  固溶态和时效态S31042钢在不同应力条件下蠕变试样的断口纵截面形貌
图11  固溶态和时效态S31042钢在700℃、200 MPa条件下蠕变样品的断口及断口附近组织形貌
1 Zhu Z L, Xu H, Khan H I, et al. Effect of exposure temperature on oxidation of austenitic steel HR3C in supercritical water [J]. Oxid. Met., 2019, 91: 77
2 Liu P, Chu Z K, Yuan Y, et al. Microstructures and mechanical properties of a newly developed austenitic heat resistant steel [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 517
3 Du H, Cheng Y, Hou L, et al. Evolution of intergranular corrosion resistance for HR3C heat-resistant austenitic stainless steel at elevated temperature [J]. Corros. Eng. Sci. Technol., 2017, 52: 343
4 Zhou Y H, Liu Y C, Zhou X S, et al. Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel [J]. J. Mater. Res., 2015, 30: 2090
5 Zieliński A, Sroka M, Hernas A, et al. The effect of long-term impact of elevated temperature on changes in microstructure and mechanical properties of HR3C Steel [J]. Arch. Metall. Mater., 2016, 61: 761
6 Li Y M, Liu Y C, Liu C X, et al. Microstructure evolution and mechanical properties of linear friction welded S31042 heat-resistant steel [J]. J. Mater. Sci. Technol., 2018, 34: 653
7 Wang B, Liu Z D, Cheng S C, et al. Microstructure evolution and mechanical properties of HR3C steel during long-term aging at high temperature [J]. J. Iron Steel Res. Int., 2014, 21: 765
8 Yang Y H, Zhu L H, Wang Q J, et al. Microstructural evolution and the effect on hardness and plasticity of S31042 heat-resistant steel during creep [J]. Mater. Sci. Eng., 2014, A608: 164
9 Zhou Y H, Liu Y C, Zhou X S, et al. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. J. Mater. Sci. Technol., 2017, 33: 1448
10 Wang J, Yu L M, Li C, et al. Effect of different temperatures on He atoms behavior in α-Fe with and without dislocations [J]. Acta Metall. Sin., 2019, 55: 274
10 王 瑾, 余黎明, 李 冲等. 不同温度对含与不含位错α-Fe中He原子行为的影响 [J]. 金属学报, 2019, 55: 274
11 Zhou Y H, Liu C X, Liu Y C, et al. Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging [J]. Int. J. Miner. Metall. Mater., 2016, 23: 283
12 Hu G D, Wang P, Li D Z, et al. Precipitate evolution in a modified 25Cr-20Ni austenitic heat resistant stainless steel during creep rupture test at 750oC [J]. Acta Metall. Sin., 2018, 54: 1705
12 胡国栋, 王 培, 李殿中等. 新型25Cr-20Ni奥氏体耐热不锈钢750℃持久实验过程中析出相演变 [J]. 金属学报, 2018, 54: 1705
13 Wang J Z, Liu Z D, Bao H S, et al. Effect of ageing at 700oC on microstructure and mechanical properties of S31042 heat resistant steel [J]. J. Iron Steel Res. Int., 2013, 20: 54
14 Zhou C, Zhan L H, Shen R L, et al. Creep behavior and mechanical properties of Al-Li-S4 alloy at different aging temperatures [J]. J. Cent. South Univ., 2020, 27: 1168
15 Duan Y H, Zhang P, Li J, et al. Influence of long-term isothermal aging on microstructure and creep rupture properties of Ni-base superalloy M4706 [J]. J. Cent. South Univ., 2020, 27: 1168
16 Wu J, Li C, Liu Y C, et al. Precipitation of intersected plate-like γ′ phase in β and its effect on creep behavior of multiphase Ni3Al-based intermetallic alloy [J]. Mater. Sci. Eng., 2019, A767: 138439
17 Fang Y Y, Zhao J, Li X N. Precipitates in HR3C steel aged at high temperature [J]. Acta Metall. Sin., 2010, 46: 844
17 方圆圆, 赵 杰, 李晓娜. HR3C钢高温时效过程中的析出相 [J]. 金属学报, 2010, 46: 844
18 Li Y M, Liu C X, Yu L M, et al. Effect of high-temperature ageing on microstructure and mechanical properties of linear friction welded S31042 steel joint [J]. Acta Metall. Sin., 2018, 54: 981
18 李彦默, 刘晨曦, 余黎明等. 高温时效对S31042钢线性摩擦焊接头组织和力学性能的影响 [J]. 金属学报, 2018, 54: 981
19 Bai X, Pan J, Chen G, et al. Effect of high temperature aging on microstructure and mechanical properties of HR3C heat resistant steel [J]. Mater. Sci. Technol., 2013, 30: 205
20 Vujic S, Sandström R, Sommitsch C. Precipitation evolution and creep strength modelling of 25Cr20NiNbN austenitic steel [J]. Mater. High Temp., 2015, 32: 607
21 Zhang Y H, Feng Q. Effects of W on creep behaviors of novel Nb-bearing austenitic heat-resistant cast steels at 1000oC [J]. Acta Metall. Sin., 2017, 53: 1025
21 张银辉, 冯 强. W对新型Nb稳定化奥氏体耐热铸钢1000℃蠕变行为的影响 [J]. 金属学报, 2017, 53: 1025
22 Zhang X, Li D Z, Li Y Y, et al. Effect of aging treatment on the microstructures and mechanical properties evolution of 25Cr-20Ni austenitic stainless steel weldments with different Nb contents [J]. J. Mater. Sci. Technol., 2019, 35: 520
23 Peng Z F, Ren W, Yang C, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service [J]. Acta Metall. Sin., 2015, 51: 1325
23 彭志方, 任 文, 杨 超等. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系 [J]. 金属学报, 2015, 51: 1325
24 Lv Z Q, Dong F, Zhou Z A, et al. Structural properties, phase stability and theoretical hardness of Cr23-xMxC6 (M=Mo, W; x=0-3) [J]. J. Alloys Compd., 2014, 607: 207
25 Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel [J]. Scr. Mater., 2011, 65: 509
26 Medvedeva N I, Van Aken D C, Medvedeva J E. Stability of binary and ternary M23C6 carbides from first principles [J]. Comput. Mater. Sci., 2015, 96: 159
27 Alomari A S, Kumar N, Murty K L. Creep behavior and microstructural evolution of a Fe-20Cr-25Ni (mass percent) austenitic stainless steel (alloy 709) at elevated temperatures [J]. Metall. Mater. Trans., 2019, 50A: 641
28 Fukunaga T, Kaneko K, Kawano R, et al. Formation of intergranular M23C6 in sensitized type-347 stainless steel [J]. ISIJ Int., 2014, 54: 148
29 Shao Y, Li Y M, Liu C X, et al. Annealing process optimization of high frequency longitudinal resistance welded low-carbon ferritic stainless steel pipe [J]. Acta Metall. Sin., 2019, 55: 1367
29 邵 毅, 李彦默, 刘晨曦等. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化 [J]. 金属学报, 2019, 55: 1367
30 Zheng L, Hu X, Kang X, et al. Precipitation of M23C6 and its effect on tensile properties of 0.3C-20Cr-11Mn-1Mo-0.35N steel [J]. Mater. Des., 2015, 78: 42
31 Dong J, Zhou X S, Liu Y C, et al. Carbide precipitation in Nb-V-Ti microalloyed ultra-high strength steel during tempering [J]. Mater. Sci. Eng., 2017, A683: 215
32 Zhang Z, Hu Z F, Tu H Y, et al. Microstructure evolution in HR3C austenitic steel during long-term creep at 650oC [J]. Mater. Sci. Eng., 2017, A681: 74
33 Zhou Q W, Ping S B, Meng X B, et al. Precipitation kinetics of M23C6 carbides in the Super304H austenitic heat-resistant steel [J]. J. Mater. Eng. Perform., 2017, 26: 6130
34 Yan J B, Gu Y F, Sun F, et al. Evolution of microstructure and mechanical properties of a 25Cr-20Ni heat resistant alloy after long-term service [J]. Mater. Sci. Eng., 2016, A675: 289
35 Wang W, Wang Z W, Li W S, et al. Evolution of M23C6 phase in HR3C steel aged at 650oC [J]. Mater. High Temp., 2016, 33: 276
36 Zhang X, Li H W, Zhan M, et al. Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations [J]. J. Mater. Sci. Technol., 2020, 36: 79
37 Wu J, Liu Y C, Li C, et al. Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents [J]. Acta Metall. Sin., 2020, 56: 21
37 吴 静, 刘永长, 李 冲等. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展 [J]. 金属学报, 2020, 56: 21
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[6] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[7] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[8] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[9] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[10] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[11] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[12] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[13] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[14] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[15] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.