Please wait a minute...
金属学报  2023, Vol. 59 Issue (9): 1125-1143    DOI: 10.11900/0412.1961.2023.00223
  综述 本期目录 | 过刊浏览 |
γ' 相强化钴基高温合金成分设计与蠕变机理研究进展
冯强1(), 路松1, 李文道1,2, 张晓瑞1, 李龙飞1(), 邹敏1, 庄晓黎1
1北京科技大学 新金属材料国家重点实验室 北京材料基因工程高精尖创新中心 北京 100083
2湘潭大学 材料科学与工程学院 湘潭 411105
Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys
FENG Qiang1(), LU Song1, LI Wendao1,2, ZHANG Xiaorui1, LI Longfei1(), ZOU Min1, ZHUANG Xiaoli1
1Beijing Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
引用本文:

冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
Qiang FENG, Song LU, Wendao LI, Xiaorui ZHANG, Longfei LI, Min ZOU, Xiaoli ZHUANG. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. Acta Metall Sin, 2023, 59(9): 1125-1143.

全文: PDF(5697 KB)   HTML
摘要: 

近年来,随着航空发动机和地面燃机的持续发展,对其关键热端部件的环境抗力和承温能力的要求越来越高,γ′相强化钴基高温合金在抗热腐蚀性能和熔点温度等方面较镍基高温合金具有优势。为了促进此类合金的发展,本文基于国内外在合金开发和蠕变性能等方面的研究成果,结合本课题组的研究工作,总结了该类合金在合金化原理、合金设计方法和蠕变机理等方面的研究现状,凝练出了目前该类合金发展存在的关键基础科学问题,并对未来需要关注的研究方向进行了概述。

关键词 钴基高温合金γ'相强化合金化合金设计蠕变    
Abstract

Recently, with the development of aviation engines and ground-based gas turbines, the demands for the environmental resistance and temperature-bearing capacity of their key hot-end components have considerably increased. Compared to Ni-based superalloys, novel γ′-strengthened Co-based superalloys are more advantageous owing to their corrosion resistance and melting temperature. To facilitate the development of these alloys, research on their alloying principles, alloy design, and creep mechanisms is summarized in this paper based on domestic and international results. Furthermore, herein, the key scientific problems in the development of such alloys are discussed, and the possible development trends and challenges in the future are surveyed.

Key wordsCo-based superalloy    γ'-strengthened    alloying    alloy design    creep
收稿日期: 2023-05-18     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(52171095);国家自然科学基金项目(52201100);国家自然科学基金项目(52201024);国家自然科学基金项目(51771019);国家自然科学基金项目(92060113);国家重点研发计划项目(2017YFB0702902);中国博士后科学基金项目(2022M710346)
TypeElementRadiusDensityPositive effectNegative effect
nmg·cm-3
γ formerCo0.1258.9--
Ni0.1258.9Enlarge γ + γ' regionForm η phase with Ti
Cr0.1287.2Enhance oxidation/corrosionDecrease the stability of γ' phase, form
resistancesecondary phases
Fe0.1267.9Stabilize γ phaseDecrease the stability of γ' phase
γ′ formerAl0.1432.7Stabilize γ' phase, enhanceForm β phase
oxidation resistance
W0.14119.4Stabilize γ' phase,Increase alloy density, form μ and χ phases
enhance creep property
Ti0.1724.5Stabilize γ' phase,Form β and η phases
enhance creep property
Ta0.14716.5Stabilize γ' phase,Form μ and χ phases
enhance creep property
Mo0.14010.2Solution strengtheningForm μ and χ phases
Nb0.1478.5Stabilize γ′ phase,Form μ, χ, and Laves phases
enhance strength
V0.1356.1Stabilize γ′ phase,Decrease oxidation resistance
enhance strength
Hf0.15913.3Stabilize γ′ phase,Form Laves phase
enhance strength
表1  γ'相强化钴基高温合金的主要合金元素及其作用
图1  温度对γ′相强化钴基[15]和镍基[23]高温合金错配度的影响
图2  钴基高温合金中γ/γ'两相的成分分布[26]
Alloy (atomic fraction / %)Tγ'-solvus / oCRef.
Co-9Al-9.8W990[33]
Co-8.8Al-9.8W-2Ta1079[1,33]
Co-7Al-8W-4Ti-1Ta1131[32]
Co-7Al-7W-4Ti-2Ta1157[13]
Co-7Al-6W-4Ti-2Ta-1Mo1143[7]
Co-7Al-6W-4Ti-2Ta-1Nb1150[7]
Co-10Ni-5Al-5W-8Ti1137[34]
Co-20Ni-9Al-6W-4Ta-2Mo1178[21]
Co-30Ni-7Al-7W-4Ti-1Ta1167[25]
Co-30Ni-11Al-4W-4Ti-1Ta1202[35]
Co-30Ni-10.5Al-4Ti-7W-2.5Ta1269[36]
Co-30Ni-11Al-4W-4Ti-1Ta-5Cr1173[37]
Co-30Ni-10Al-5Mo-2Ta-2Ti-10Cr1078[38]
Co-35.4Ni-9.9Al-4.9Mo-2.8Ta-3.5Ti-5.9Cr1156[39]
Co-32Ni-9Al-2W-1Ti-1Ta-14Cr-2.5Mo-0.5Nb1050[40]
Co-32Ni-11Al-2W-2Ti-3Ta-5Cr-0.5Mo-0.5Nb1201[41]
Ni-based wrought superalloy928-1159[6,10,11]
Ni-based single crystal superalloy1221-1330[6,10,11,42]
表2  部分钴基高温合金的名义成分和γ'相溶解温度(Tγ'-solvus) [1,6,7,10,11,13,21,25,32~42]
图3  部分合金元素在Co和Ni中的扩散系数[47]
图4  基于显微组织逆向设计的复杂多组元钴基合金成分设计方法示意图[5,26]
图5  Co-Al-W和CoNi基单晶高温合金与镍基单晶高温合金蠕变性能[12,13,90,93,95,96]
图6  Ti和Ta元素对Co-Al-W基单晶高温合金蠕变性能的影响[13]
图7  正错配度Co-Al-W基单晶高温合金高温拉伸蠕变过程中的微观组织演变[98]
图8  钴基单晶高温合金γ'相中超点阵内禀层错(SISF)[102]和超点阵外禀层错(SESF)[91]的原子结构及其形成机制模型图
图9  Co-Al-W基单晶高温合金γ'相中形成的不同类型的层错交互作用结构[91]
图10  CoNi基单晶高温合金中反相畴界-超点阵内禀层错-反相畴界(APB-SISF-APB)结构的形成机制示意图[28]
图11  钴基单晶高温合金高温低应力拉伸蠕变条件下不同阶段微观组织和形变亚结构演变的模型图[90]
图12  合金元素对γ'相层错能(Co3TM)[107]和反相畴界能(Co3Al0.75TM0.25)[108]的影响
图13  γ'相中层错附近合金元素偏析诱导缺陷类型转变模型[111]和与SISF相连的Shockley不全位错[104]
图14  γ相形成元素偏析诱导的γ'→γ相转变[94,104]
1 Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
pmid: 16601187
2 ZXGG-SK01-8-2020 process specification for a precision casting of a Co-based single crystal turbine first-stage working blade [S]. 2020
2 ZXGG-SK01-8-2020 新型钴基单晶合金透平一级工作叶片精铸件工艺规程 [S]. 2020
3 Shinagawa K, Omori T, Sato J, et al. Phase equilibria and microstructure on γ' phase in Co-Ni-Al-W system [J]. Mater. Trans., 2008, 49: 1474
doi: 10.2320/matertrans.MER2008073
4 Cui C Y, Ping D H, Gu Y F, et al. A new Co-base superalloy strengthened by γ' phase [J]. Mater. Trans., 2006, 47: 2099
doi: 10.2320/matertrans.47.2099
5 Li W D, Li L F, Wei C D, et al. Effects of Ni, Cr and W on the microstructural stability of multicomponent CoNi-base superalloys studied using CALPHAD and diffusion-multiple approaches [J]. J. Mater. Sci. Technol., 2021, 80: 139
doi: 10.1016/j.jmst.2020.10.080
6 Ooshima M, Tanaka K, Okamoto N L, et al. Effects of quaternary alloying elements on the γ' solvus temperature of Co-Al-W based alloys with FCC/L12 two-phase microstructures [J]. J. Alloys Compd., 2010, 508: 71
doi: 10.1016/j.jallcom.2010.08.050
7 Zhou H J, Li W D, Xue F, et al. Alloying effects on microstructural stability and γ' phase nano-hardness in Co-Al-W-Ta-Ti-base superalloys [A]. Superalloys 2016 [C]. Hoboken: Wiley, 2016: 981
8 Yan H Y, Vorontsov V A, Dye D. Alloying effects in polycrystalline γ' strengthened Co-Al-W base alloys [J]. Intermetallics, 2014, 48: 44
doi: 10.1016/j.intermet.2013.10.022
9 Bauer A, Neumeier S, Pyczak F, et al. Creep strength and microstructure of polycrystalline γ'-strengthened cobalt-base superalloys [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 695
10 Suzuki A, Inui H, Pollock T M. L12-strengthened cobalt-base superalloys [J]. Annu. Rev. Mater. Res., 2015, 45: 345
doi: 10.1146/matsci.2015.45.issue-1
11 Omori T, Oikawa K, Sato J, et al. Partition behavior of alloying elements and phase transformation temperatures in Co-Al-W-base quaternary systems [J]. Intermetallics, 2013, 32: 274
doi: 10.1016/j.intermet.2012.07.033
12 Titus M S, Suzuki A, Pollock T M. High temperature creep of new L12 containing cobalt-base superalloys [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 823
13 Xue F, Zhou H J, Feng Q. Improved high-temperature microstructural stability and creep property of novel Co-base single-crystal alloys containing Ta and Ti [J]. JOM, 2014, 66: 2486
doi: 10.1007/s11837-014-1181-y
14 Xue F, Zhou H J, Shi Q Y, et al. Creep behavior in a γ' strengthened Co-Al-W-Ta-Ti single-crystal alloy at 1000℃ [J]. Scr. Mater., 2015, 97: 37
doi: 10.1016/j.scriptamat.2014.10.015
15 Pyczak F, Bauer A, Göken M, et al. The effect of tungsten content on the properties of L12-hardened Co-Al-W alloys [J]. J. Alloys Compd., 2015, 632: 110
doi: 10.1016/j.jallcom.2015.01.031
16 Gao Q Z, Jiang Y J, Liu Z Y, et al. Effects of alloying elements on microstructure and mechanical properties of Co-Ni-Al-Ti superalloy [J]. Mater. Sci. Eng., 2020, A779: 139139
17 Fu H D, Zhang Y H, Xue F, et al. Microstructure and properties evolution of Co-Al-W-Ni-Cr superalloys by molybdenum and niobium substitutions for tungsten [J]. Metall. Mater. Trans., 2020, 51A: 299
18 Xue F, Wang M L, Feng Q. Alloying effects on heat-treated microstructure in Co-Al-W-base superalloys at 1300oC and 900oC [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 813
19 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 46
20 Povstugar I, Zenk C H, Li R, et al. Elemental partitioning, lattice misfit and creep behaviour of Cr containing γ' strengthened Co base superalloys [J]. Mater. Sci. Technol., 2016, 32: 220
doi: 10.1179/1743284715Y.0000000112
21 Tanaka K, Ooshima M, Okamoto N L, et al. Morphology change of γ' precipitates in γ/γ' two-phase microstructure in Co-based superalloys by higher-order alloying [J]. MRS Online Proc. Libr., 2011, 1295: 423
22 Li Y Z, Pyczak F, Stark A, et al. Temperature dependence of misfit in different Co-Al-W ternary alloys measured by synchrotron X-ray diffraction [J]. J. Alloys Compd., 2020, 819: 152940
doi: 10.1016/j.jallcom.2019.152940
23 Mughrabi H. The importance of sign and magnitude of γ/γ' lattice misfit in superalloys-with special reference to the new γ'-hardened cobalt-base superalloys [J]. Acta Mater., 2014, 81: 21
doi: 10.1016/j.actamat.2014.08.005
24 Coakley J, Lass E A, Ma D, et al. Lattice parameter misfit evolution during creep of a cobalt-based superalloy single crystal with cuboidal and rafted gamma-prime microstructures [J]. Acta Mater., 2017, 136: 118
doi: 10.1016/j.actamat.2017.06.025
25 Lass E A, Sauza D J, Dunand D C, et al. Multicomponent γ'- strengthened Co-based superalloys with increased solvus temperatures and reduced mass densities [J]. Acta Mater., 2018, 147: 284
doi: 10.1016/j.actamat.2018.01.034
26 Zhuang X L, Antonov S, Li L F, et al. γ'-strengthened multicomponent CoNi-based wrought superalloys with improved comprehensive properties [J]. Metall. Mater. Trans., 2023, 54A: 1671
27 Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
28 Eggeler Y M, Müller J, Titus M S, et al. Planar defect formation in the γ' phase during high temperature creep in single crystal CoNi-base superalloys [J]. Acta Mater., 2016, 113: 335
doi: 10.1016/j.actamat.2016.03.077
29 Pandey P, Mukhopadhyay S, Srivastava C, et al. Development of new γ'-strengthened Co-based superalloys with low mass density, high solvus temperature and high temperature strength [J]. Mater. Sci. Eng., 2020, A790: 139578
30 Pollock T M, Dibbern J, Tsunekane M, et al. New Co-based γ-γ' high-temperature alloys [J]. JOM, 2010, 62(1): 58
31 Neumeier S, Freund L P, Göken M. Novel wrought γ/γ' cobalt base superalloys with high strength and improved oxidation resistance [J]. Scr. Mater., 2015, 109: 104
doi: 10.1016/j.scriptamat.2015.07.030
32 Xue F, Zhou H J, Ding X F, et al. Improved high temperature γ' stability of Co-Al-W-base alloys containing Ti and Ta [J]. Mater. Lett., 2013, 112: 215
doi: 10.1016/j.matlet.2013.09.023
33 Makineni S K, Samanta A, Rojhirunsakool T, et al. A new class of high strength high temperature Cobalt based γ-γ' Co-Mo-Al alloys stabilized with Ta addition [J]. Acta Mater., 2015, 97: 29
doi: 10.1016/j.actamat.2015.06.034
34 Bocchini P J, Sudbrack C K, Noebe R D, et al. Effects of titanium substitutions for aluminum and tungsten in Co-10Ni-9Al-9W (at%) superalloys [J]. Mater. Sci. Eng., 2017, A705: 122
35 Li W D, Li L F, Antonov S, et al. Effective design of a Co-Ni-Al-W-Ta-Ti alloy with high γ' solvus temperature and microstructural stability using combined CALPHAD and experimental approaches [J]. Mater. Des., 2019, 180: 107912
doi: 10.1016/j.matdes.2019.107912
36 Lass E A. Application of computational thermodynamics to the design of a Co-Ni-based γ'-strengthened superalloy [J]. Metall. Mater. Trans., 2017A, 48: 2443
37 Li W D, Li L F, Antonov S, et al. Effects of Cr and Al/W ratio on the microstructural stability, oxidation property and γ' phase nano-hardness of multi-component Co-Ni-base superalloys [J]. J. Alloys Compd., 2020, 826: 154182
doi: 10.1016/j.jallcom.2020.154182
38 Nithin B, Samanta A, Makineni S K, et al. Effect of Cr addition on γ-γ' cobalt-based Co-Mo-Al-Ta class of superalloys: A combined experimental and computational study [J]. J. Mater. Sci., 2017, 52: 11036
doi: 10.1007/s10853-017-1159-6
39 Pandey P, Kashyap S, Palanisamy D, et al. On the high temperature coarsening kinetics of γ' precipitates in a high strength Co37.6Ni35.4Al9.9Mo4.9Cr5.9Ta2.8Ti3.5 fcc-based high entropy alloy [J]. Acta Mater., 2019, 177: 82
doi: 10.1016/j.actamat.2019.07.011
40 Zhuang X L, Antonov S, Li W D, et al. Alloying effects and effective alloy design of high-Cr CoNi-based superalloys via a high-throughput experiments and machine learning framework [J]. Acta Mater., 2023, 243: 118525
doi: 10.1016/j.actamat.2022.118525
41 Zou M, Li W D, Li L F, et al. Machine learning assisted design approach for developing γ'-strengthened Co-Ni-base superalloys [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 937
42 Caron P. High γ' solvus new generation nickel-based superalloys for single crystal turbine blade applications [A]. Superalloys 2000 [C]. Warrendale: TMS, 2000: 737
43 Suzuki A, Pollock T M. High-temperature strength and deformation of γ/γ' two-phase Co-Al-W-base alloys [J]. Acta Mater., 2008, 56: 1288
doi: 10.1016/j.actamat.2007.11.014
44 Meher S, Nag S, Tiley J, et al. Coarsening kinetics of γ' precipitates in cobalt-base alloys [J]. Acta Mater., 2013, 61: 4266
doi: 10.1016/j.actamat.2013.03.052
45 Vorontsov V A, Barnard J S, Rahman K M, et al. Coarsening behaviour and interfacial structure of γ' precipitates in Co-Al-W based superalloys [J]. Acta Mater., 2016, 120: 14
doi: 10.1016/j.actamat.2016.08.023
46 Zhou H J, Xue F, Chang H, et al. Effect of Mo on microstructural characteristics and coarsening kinetics of γ' precipitates in Co-Al-W-Ta-Ti alloys [J]. J. Mater. Sci. Technol., 2018, 34: 799
doi: 10.1016/j.jmst.2017.04.012
47 Neumeier S, Rehman H U, Neuner J, et al. Diffusion of solutes in fcc cobalt investigated by diffusion couples and first principles kinetic Monte Carlo [J]. Acta Mater., 2016, 106: 304
doi: 10.1016/j.actamat.2016.01.028
48 Lee C S. Precipitation-hardening characteristics of ternary cobalt-aluminum-X alloys [D]. Tucson: The University of Arizona, 1971
49 Pollock T M. Alloy design for aircraft engines [J]. Nat. Mater., 2016, 15: 809
doi: 10.1038/nmat4709 pmid: 27443900
50 Chen Y C, Wang C P, Ruan J J, et al. Development of low-density γ/γ' Co-Al-Ta-based superalloys with high solvus temperature [J]. Acta Mater., 2020, 188: 652
doi: 10.1016/j.actamat.2020.02.049
51 Chen Y C, Wang C P, Ruan J J, et al. High-strength Co-Al-V-base superalloys strengthened by γ'-Co3(Al, V) with high solvus temperature [J]. Acta Mater., 2019, 170: 62
doi: 10.1016/j.actamat.2019.03.013
52 Ruan J J, Liu X J, Yang S Y, et al. Novel Co-Ti-V-base superalloys reinforced by L12-ordered γ' phase [J]. Intermetallics, 2018, 92: 126
doi: 10.1016/j.intermet.2017.09.015
53 Zenk C H, Volz N, Bezold A, et al. The effect of alloying on the thermophysical and mechanical properties of Co-Ti-Cr-based superalloys [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 909
54 Forsik S A J, Polar Rosas A O, Wang T, et al. High-temperature oxidation behavior of a novel Co-base superalloy [J]. Metall. Mater. Trans., 2018, 49A: 4058
55 Volz N, Zenk C H, Cherukuri R, et al. Thermophysical and mechanical properties of advanced single crystalline Co-base superalloys [J]. Metall. Mater. Trans., 2018, 49A: 4099
56 Knop M, Mulvey P, Ismail F, et al. A new polycrystalline Co-Ni superalloy [J]. JOM, 2014, 66: 2495
doi: 10.1007/s11837-014-1175-9
57 Titus M S, Eggeler Y M, Suzuki A, et al. Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys [J]. Acta Mater., 2015, 82: 530
doi: 10.1016/j.actamat.2014.08.033
58 Bocchini P J, Sudbrack C K, Noebe R D, et al. Temporal evolution of a model Co-Al-W superalloy aged at 650oC and 750oC [J]. Acta Mater., 2018, 159: 197
doi: 10.1016/j.actamat.2018.08.014
59 Shinagawa K, Omori T, Oikawa K, et al. Ductility enhancement by boron addition in Co-Al-W high-temperature alloys [J]. Scr. Mater., 2009, 61: 612
doi: 10.1016/j.scriptamat.2009.05.037
60 Xu Y T, Xia T D, Yan J Q, et al. Effect of alloying elements on oxidation behavior of Co-Al-W alloys at high temperature [J]. Chin. J. Nonferrous Met., 2010, 20: 2168
doi: 10.1016/S1003-6326(09)60437-4
60 徐仰涛, 夏天东, 闫健强 等. 合金元素对Co-Al-W合金高温氧化行为的影响 [J]. 中国有色金属学报, 2010, 20: 2168
61 Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel Co-based superalloys: A review [J]. Acta Metall. Sin., 2020, 56: 1
61 刘兴军, 陈悦超, 卢 勇 等. 新型钴基高温合金多尺度设计的研究现状与展望 [J]. 金属学报, 2020, 56: 1
62 Zhu L L, Wei C D, Qi H Y, et al. Experimental investigation of phase equilibria in the Co-rich part of the Co-Al-X (X = W, Mo, Nb, Ni, Ta) ternary systems using diffusion multiples [J]. J. Alloys Compd., 2017, 691: 110
doi: 10.1016/j.jallcom.2016.08.210
63 Cao B X, Kong H J, Ding Z Y, et al. A novel L12-strengthened multicomponent Co-rich high-entropy alloy with both high γ'-solvus temperature and superior high-temperature strength [J]. Scr. Mater., 2021, 199: 113826
doi: 10.1016/j.scriptamat.2021.113826
64 Guan Y, Liu Y C, Ma Z Q, et al. Investigation on γ' stability in CoNi-based superalloys during long-term aging at 900oC [J]. J. Alloys Compd., 2020, 842: 155891
doi: 10.1016/j.jallcom.2020.155891
65 Shi L, Yu J J, Cui C Y, et al. Microstructural stability and tensile properties of a Ti-containing single-crystal Co-Ni-Al-W-base alloy [J]. Mater. Sci. Eng., 2015, A646: 45
66 Fan Z D, Wang X G, Yang Y H, et al. Plastic deformation behaviors and mechanical properties of advanced single crystalline CoNi-base superalloys [J]. Mater. Sci. Eng., 2019, A748: 267
67 Chen J, Guo M, Yang M, et al. Double minimum creep processing and mechanism for γ' strengthened cobalt-based superalloy [J]. J. Mater. Sci. Technol., 2022, 112: 123
doi: 10.1016/j.jmst.2021.10.015
68 Zhu J, Titus M S, Pollock T M. Experimental investigation and thermodynamic modeling of the Co-rich region in the Co-Al-Ni-W quaternary system [J]. J. Phase Equilib. Diffus., 2014, 35: 595
doi: 10.1007/s11669-014-0327-5
69 Chen T L, Guo C P, Li C R, et al. Experimental investigation of the phase relations in the Al-Co-Ti system [J]. J. Phase Equilib. Diffus., 2019, 40: 254
doi: 10.1007/s11669-019-00722-2
70 Zhou C Y, Guo C P, Li J B, et al. Experimental investigations of the Co-Ni-Ti system: Liquidus surface projection and isothermal section at 1373 K [J]. J. Alloys Compd., 2018, 754: 268
doi: 10.1016/j.jallcom.2018.04.253
71 Zhou C Y, Guo C P, Li C R, et al. Investigation on the intermetallic compound Co3Ta and high-temperature phase equilibria in the Co-Ni-Ta system [J]. Intermetallics, 2019, 108: 1
doi: 10.1016/j.intermet.2019.02.002
72 Yang S Y. Thermodynamic analysis and alloy design of Co-Al-W based superalloys [D]. Shenyang: Northeastern University, 2012
72 杨舒宇. Co-Al-W基高温合金热力学分析及合金设计 [D]. 沈阳: 东北大学, 2012
73 Ruan J J, Xu W W, Yang T, et al. Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γ' region by machine learning and CALPHAD methods [J]. Acta Mater., 2020, 186: 425
doi: 10.1016/j.actamat.2020.01.004
74 Zhuang X L, Lu S, Li L F, et al. Microstructures and properties of a novel γ'-strengthened multi-component CoNi-based wrought superalloy designed by CALPHAD method [J]. Mater. Sci. Eng., 2020, A780: 139219
75 Jiang C. First-principles study of Co3(Al, W) alloys using special quasi-random structures [J]. Scr. Mater., 2008, 59: 1075
doi: 10.1016/j.scriptamat.2008.07.021
76 Kobayashi S, Tsukamoto Y, Takasugi T, et al. Determination of phase equilibria in the Co-rich Co-Al-W ternary system with a diffusion-couple technique [J]. Intermetallics, 2009, 17: 1085
doi: 10.1016/j.intermet.2009.05.009
77 Chen M, Wang C Y. First-principle investigation of 3d transition metal elements in γ'-Co3(Al, W) [J]. J. Appl. Phys., 2010, 107: 093705
78 Xu W W, Han J J, Wang Z W, et al. Thermodynamic, structural and elastic properties of Co3 X (X = Ti, Ta, W, V, Al) compounds from first-principles calculations [J]. Intermetallics, 2013, 32: 303
doi: 10.1016/j.intermet.2012.08.022
79 Gao Q Z, Zhang X M, Ma Q S, et al. Accelerating design of novel Cobalt-based superalloys based on first-principles calculations [J]. J. Alloys Compd., 2022, 927: 167012
doi: 10.1016/j.jallcom.2022.167012
80 Zhao J C, Zheng X, Cahill D G. High-throughput diffusion multiples [J]. Mater. Today, 2005, 8: 28
81 Suzuki A, Morra M M, Larsen M. Cobalt-nickel superalloys, and related articles [P]. US Pat, 20110268989A1, 2010
82 Li W D, Li L F, Antonov S, et al. High-throughput exploration of alloying effects on the microstructural stability and properties of multi-component CoNi-base superalloys [J]. J. Alloys Compd., 2021, 881: 160618
doi: 10.1016/j.jallcom.2021.160618
83 Stewart C A, Suzuki A, Rhein R K, et al. Oxidation behavior across composition space relevant to Co-based γ/γ' alloys [J]. Metall. Mater. Trans., 2019, 50A: 5445
84 Fan L L, Li Y, Zhao X Y, et al. High-throughput preparation and characterization of early hot-corrosion behaviors of compositional gradient Al-Cr complex coatings on a novel Co-Al-W-based alloy [J]. Corros. Sci., 2021, 192: 109811
doi: 10.1016/j.corsci.2021.109811
85 Zhongguancun Material Testing Technology Alliance. T/CSTM 00120—2019 general rule for materials genome engineering data [S]. 2019
85 中关村材料试验技术联盟. T/CSTM 00120-2019 材料基因工程数据通则 [S]. 2019
86 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
86 宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
87 Liu P, Huang H Y, Antonov S, et al. Machine learning assisted design of γ'-strengthened Co-base superalloys with multi-performance optimization [J]. npj Comput. Mater., 2020, 6: 62
doi: 10.1038/s41524-020-0334-5
88 Lu S, Zou M, Zhang X R, et al. Data-driven “cross-component” design and optimization of γ'-strengthened Co-based superalloys [J]. Adv. Eng. Mater., 2023, 25: 2201257
doi: 10.1002/adem.v25.10
89 Yu J X, Wang C L, Chen Y C, et al. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data [J]. Mater. Des., 2020, 195: 108996
doi: 10.1016/j.matdes.2020.108996
90 Lu S, Antonov S, Li L F, et al. Two steady-state creep stages in Co-Al-W-base single-crystal superalloys at 1273 K/137 MPa [J]. Met-all. Mater. Trans., 2018, 49A: 4079
91 Lu S, Antonov S, Li L F, et al. Atomic structure and elemental segregation behavior of creep defects in a Co-Al-W-based single crystal superalloys under high temperature and low stress [J]. Acta Mater., 2020, 190: 16
doi: 10.1016/j.actamat.2020.03.015
92 Lu S, Luo Z E, Li L F, et al. Comparison of creep mechanisms between Co-Al-W- and CoNi-based single crystal superalloys at low temperature and high stresses [J]. Metall. Mater. Trans., 2023, 54A: 1597
93 Shi L, Yu J J, Cui C Y, et al. The creep deformation behavior of a single-crystal Co-Al-W-base superalloy at 900oC [J]. Mater. Sci. Eng., 2015, A635: 50
94 Lenz M, Eggeler Y M, Müller J, et al. Tension/Compression asymmetry of a creep deformed single crystal Co-base superalloy [J]. Acta Mater., 2019, 166: 597
doi: 10.1016/j.actamat.2018.12.053
95 Tanaka K, Ooshima M, Tsuno N, et al. Creep deformation of single crystals of new Co-Al-W-based alloys with fcc/L12 two-phase microstructures [J]. Philos. Mag., 2012, 92: 4011
doi: 10.1080/14786435.2012.700416
96 Titus M S. High temperature deformation mechanisms of L12-containing Co-based superalloys [D]. Santa Barbara: University of California, 2015
97 Titus M S, Rettberg L H, Pollock T M. High temperature creep of γ'-containing CoNi-based superalloys [A]. Superalloys 2016 [C]. Hoboken: Wiley, 2016: 141
98 Zhou H J, Li L F, Antonov S, et al. Sub/micro-structural evolution of a Co-Al-W-Ta-Ti single crystal superalloy during creep at 900oC and 420 MPa [J]. Mater. Sci. Eng., 2020, A772: 138791
99 Tetzlaff U, Mughrabi H. Enhancement of the high-temperature tensile creep strength of monocrystalline nickel-base superalloys by pre-rafting in compression [A]. Superalloys 2000 [C]. Warrendale: TMS, 2000: 273
100 Chung D W, Ng D S, Dunand D C. Influence of γ'-raft orientation on creep resistance of monocrystalline Co-based superalloys [J]. Materialia, 2020, 12: 100678
doi: 10.1016/j.mtla.2020.100678
101 Rae C M F, Reed R C. Primary creep in single crystal superalloys: Origins, mechanisms and effects [J]. Acta Mater., 2007, 55: 1067
doi: 10.1016/j.actamat.2006.09.026
102 Lenz M, Wu M J, He J Y, et al. Atomic structure and chemical composition of planar fault structures in Co-base superalloys [A]. Superalloys 2000 [C]. Cham: Springer, 2020: 920
103 Li Q J, Li J, Shan Z W, et al. Strongly correlated breeding of high-speed dislocations [J]. Acta Mater., 2016, 119: 229
doi: 10.1016/j.actamat.2016.07.053
104 Lu S, Antonov S, Xue F, et al. Segregation-assisted phase transformation and anti-phase boundary formation during creep of a γ'-strengthened Co-based superalloy at high temperatures [J]. Acta Mater., 2021, 215: 117099
doi: 10.1016/j.actamat.2021.117099
105 Smith T M, Good B S, Gabb T P, et al. Effect of stacking fault segregation and local phase transformations on creep strength in Ni-base superalloys [J]. Acta Mater., 2019, 172: 55
doi: 10.1016/j.actamat.2019.04.038
106 Lilensten L, Kürnsteiner P, Mianroodi J R, et al. Segregation of solutes at dislocations: A new alloy design parameter for advanced superalloys [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 41
107 Zhang Y, Li J S, Wang W Y, et al. When a defect is a pathway to improve stability: A case study of the L12 Co3TM superlattice intrinsic stacking fault [J]. J. Mater. Sci., 2019, 54: 13609
doi: 10.1007/s10853-019-03884-z
108 Wang W Y, Xue F, Zhang Y, et al. Atomic and electronic basis for solutes strengthened (010) anti-phase boundary of L12 Co3(Al, TM): A comprehensive first-principles study [J]. Acta Mater., 2018, 145: 30
doi: 10.1016/j.actamat.2017.10.041
109 Titus M S, Mottura A, Babu Viswanathan G, et al. High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys [J]. Acta Mater., 2015, 89: 423
doi: 10.1016/j.actamat.2015.01.050
110 Titus M S, Rhein R K, Wells P B, et al. Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects [J]. Sci. Adv., 2016, 2: e1601796
doi: 10.1126/sciadv.1601796
111 Barba D, Smith T M, Miao J, et al. Segregation-assisted plasticity in Ni-based superalloys [J]. Metall. Mater. Trans., 2018, 49A: 4173
112 Makineni S K, Kumar A, Lenz M, et al. On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy [J]. Acta Mater., 2018, 155: 362
doi: 10.1016/j.actamat.2018.05.074
113 He J Y, Zenk C H, Zhou X Y, et al. On the atomic solute diffusional mechanisms during compressive creep deformation of a Co-Al-W-Ta single crystal superalloy [J]. Acta Mater., 2020, 184: 86
doi: 10.1016/j.actamat.2019.11.035
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[5] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[6] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[7] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[8] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[9] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[10] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[11] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[12] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[13] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[14] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[15] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.