|
|
γ' 相强化钴基高温合金成分设计与蠕变机理研究进展 |
冯强1(), 路松1, 李文道1,2, 张晓瑞1, 李龙飞1(), 邹敏1, 庄晓黎1 |
1北京科技大学 新金属材料国家重点实验室 北京材料基因工程高精尖创新中心 北京 100083 2湘潭大学 材料科学与工程学院 湘潭 411105 |
|
Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys |
FENG Qiang1(), LU Song1, LI Wendao1,2, ZHANG Xiaorui1, LI Longfei1(), ZOU Min1, ZHUANG Xiaoli1 |
1Beijing Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 2School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China |
引用本文:
冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
Qiang FENG,
Song LU,
Wendao LI,
Xiaorui ZHANG,
Longfei LI,
Min ZOU,
Xiaoli ZHUANG.
Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. Acta Metall Sin, 2023, 59(9): 1125-1143.
1 |
Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
pmid: 16601187
|
2 |
ZXGG-SK01-8-2020 process specification for a precision casting of a Co-based single crystal turbine first-stage working blade [S]. 2020
|
2 |
ZXGG-SK01-8-2020 新型钴基单晶合金透平一级工作叶片精铸件工艺规程 [S]. 2020
|
3 |
Shinagawa K, Omori T, Sato J, et al. Phase equilibria and microstructure on γ' phase in Co-Ni-Al-W system [J]. Mater. Trans., 2008, 49: 1474
doi: 10.2320/matertrans.MER2008073
|
4 |
Cui C Y, Ping D H, Gu Y F, et al. A new Co-base superalloy strengthened by γ' phase [J]. Mater. Trans., 2006, 47: 2099
doi: 10.2320/matertrans.47.2099
|
5 |
Li W D, Li L F, Wei C D, et al. Effects of Ni, Cr and W on the microstructural stability of multicomponent CoNi-base superalloys studied using CALPHAD and diffusion-multiple approaches [J]. J. Mater. Sci. Technol., 2021, 80: 139
doi: 10.1016/j.jmst.2020.10.080
|
6 |
Ooshima M, Tanaka K, Okamoto N L, et al. Effects of quaternary alloying elements on the γ' solvus temperature of Co-Al-W based alloys with FCC/L12 two-phase microstructures [J]. J. Alloys Compd., 2010, 508: 71
doi: 10.1016/j.jallcom.2010.08.050
|
7 |
Zhou H J, Li W D, Xue F, et al. Alloying effects on microstructural stability and γ' phase nano-hardness in Co-Al-W-Ta-Ti-base superalloys [A]. Superalloys 2016 [C]. Hoboken: Wiley, 2016: 981
|
8 |
Yan H Y, Vorontsov V A, Dye D. Alloying effects in polycrystalline γ' strengthened Co-Al-W base alloys [J]. Intermetallics, 2014, 48: 44
doi: 10.1016/j.intermet.2013.10.022
|
9 |
Bauer A, Neumeier S, Pyczak F, et al. Creep strength and microstructure of polycrystalline γ'-strengthened cobalt-base superalloys [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 695
|
10 |
Suzuki A, Inui H, Pollock T M. L12-strengthened cobalt-base superalloys [J]. Annu. Rev. Mater. Res., 2015, 45: 345
doi: 10.1146/matsci.2015.45.issue-1
|
11 |
Omori T, Oikawa K, Sato J, et al. Partition behavior of alloying elements and phase transformation temperatures in Co-Al-W-base quaternary systems [J]. Intermetallics, 2013, 32: 274
doi: 10.1016/j.intermet.2012.07.033
|
12 |
Titus M S, Suzuki A, Pollock T M. High temperature creep of new L12 containing cobalt-base superalloys [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 823
|
13 |
Xue F, Zhou H J, Feng Q. Improved high-temperature microstructural stability and creep property of novel Co-base single-crystal alloys containing Ta and Ti [J]. JOM, 2014, 66: 2486
doi: 10.1007/s11837-014-1181-y
|
14 |
Xue F, Zhou H J, Shi Q Y, et al. Creep behavior in a γ' strengthened Co-Al-W-Ta-Ti single-crystal alloy at 1000℃ [J]. Scr. Mater., 2015, 97: 37
doi: 10.1016/j.scriptamat.2014.10.015
|
15 |
Pyczak F, Bauer A, Göken M, et al. The effect of tungsten content on the properties of L12-hardened Co-Al-W alloys [J]. J. Alloys Compd., 2015, 632: 110
doi: 10.1016/j.jallcom.2015.01.031
|
16 |
Gao Q Z, Jiang Y J, Liu Z Y, et al. Effects of alloying elements on microstructure and mechanical properties of Co-Ni-Al-Ti superalloy [J]. Mater. Sci. Eng., 2020, A779: 139139
|
17 |
Fu H D, Zhang Y H, Xue F, et al. Microstructure and properties evolution of Co-Al-W-Ni-Cr superalloys by molybdenum and niobium substitutions for tungsten [J]. Metall. Mater. Trans., 2020, 51A: 299
|
18 |
Xue F, Wang M L, Feng Q. Alloying effects on heat-treated microstructure in Co-Al-W-base superalloys at 1300oC and 900oC [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 813
|
19 |
Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 46
|
20 |
Povstugar I, Zenk C H, Li R, et al. Elemental partitioning, lattice misfit and creep behaviour of Cr containing γ' strengthened Co base superalloys [J]. Mater. Sci. Technol., 2016, 32: 220
doi: 10.1179/1743284715Y.0000000112
|
21 |
Tanaka K, Ooshima M, Okamoto N L, et al. Morphology change of γ' precipitates in γ/γ' two-phase microstructure in Co-based superalloys by higher-order alloying [J]. MRS Online Proc. Libr., 2011, 1295: 423
|
22 |
Li Y Z, Pyczak F, Stark A, et al. Temperature dependence of misfit in different Co-Al-W ternary alloys measured by synchrotron X-ray diffraction [J]. J. Alloys Compd., 2020, 819: 152940
doi: 10.1016/j.jallcom.2019.152940
|
23 |
Mughrabi H. The importance of sign and magnitude of γ/γ' lattice misfit in superalloys-with special reference to the new γ'-hardened cobalt-base superalloys [J]. Acta Mater., 2014, 81: 21
doi: 10.1016/j.actamat.2014.08.005
|
24 |
Coakley J, Lass E A, Ma D, et al. Lattice parameter misfit evolution during creep of a cobalt-based superalloy single crystal with cuboidal and rafted gamma-prime microstructures [J]. Acta Mater., 2017, 136: 118
doi: 10.1016/j.actamat.2017.06.025
|
25 |
Lass E A, Sauza D J, Dunand D C, et al. Multicomponent γ'- strengthened Co-based superalloys with increased solvus temperatures and reduced mass densities [J]. Acta Mater., 2018, 147: 284
doi: 10.1016/j.actamat.2018.01.034
|
26 |
Zhuang X L, Antonov S, Li L F, et al. γ'-strengthened multicomponent CoNi-based wrought superalloys with improved comprehensive properties [J]. Metall. Mater. Trans., 2023, 54A: 1671
|
27 |
Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
|
28 |
Eggeler Y M, Müller J, Titus M S, et al. Planar defect formation in the γ' phase during high temperature creep in single crystal CoNi-base superalloys [J]. Acta Mater., 2016, 113: 335
doi: 10.1016/j.actamat.2016.03.077
|
29 |
Pandey P, Mukhopadhyay S, Srivastava C, et al. Development of new γ'-strengthened Co-based superalloys with low mass density, high solvus temperature and high temperature strength [J]. Mater. Sci. Eng., 2020, A790: 139578
|
30 |
Pollock T M, Dibbern J, Tsunekane M, et al. New Co-based γ-γ' high-temperature alloys [J]. JOM, 2010, 62(1): 58
|
31 |
Neumeier S, Freund L P, Göken M. Novel wrought γ/γ' cobalt base superalloys with high strength and improved oxidation resistance [J]. Scr. Mater., 2015, 109: 104
doi: 10.1016/j.scriptamat.2015.07.030
|
32 |
Xue F, Zhou H J, Ding X F, et al. Improved high temperature γ' stability of Co-Al-W-base alloys containing Ti and Ta [J]. Mater. Lett., 2013, 112: 215
doi: 10.1016/j.matlet.2013.09.023
|
33 |
Makineni S K, Samanta A, Rojhirunsakool T, et al. A new class of high strength high temperature Cobalt based γ-γ' Co-Mo-Al alloys stabilized with Ta addition [J]. Acta Mater., 2015, 97: 29
doi: 10.1016/j.actamat.2015.06.034
|
34 |
Bocchini P J, Sudbrack C K, Noebe R D, et al. Effects of titanium substitutions for aluminum and tungsten in Co-10Ni-9Al-9W (at%) superalloys [J]. Mater. Sci. Eng., 2017, A705: 122
|
35 |
Li W D, Li L F, Antonov S, et al. Effective design of a Co-Ni-Al-W-Ta-Ti alloy with high γ' solvus temperature and microstructural stability using combined CALPHAD and experimental approaches [J]. Mater. Des., 2019, 180: 107912
doi: 10.1016/j.matdes.2019.107912
|
36 |
Lass E A. Application of computational thermodynamics to the design of a Co-Ni-based γ'-strengthened superalloy [J]. Metall. Mater. Trans., 2017A, 48: 2443
|
37 |
Li W D, Li L F, Antonov S, et al. Effects of Cr and Al/W ratio on the microstructural stability, oxidation property and γ' phase nano-hardness of multi-component Co-Ni-base superalloys [J]. J. Alloys Compd., 2020, 826: 154182
doi: 10.1016/j.jallcom.2020.154182
|
38 |
Nithin B, Samanta A, Makineni S K, et al. Effect of Cr addition on γ-γ' cobalt-based Co-Mo-Al-Ta class of superalloys: A combined experimental and computational study [J]. J. Mater. Sci., 2017, 52: 11036
doi: 10.1007/s10853-017-1159-6
|
39 |
Pandey P, Kashyap S, Palanisamy D, et al. On the high temperature coarsening kinetics of γ' precipitates in a high strength Co37.6Ni35.4Al9.9Mo4.9Cr5.9Ta2.8Ti3.5 fcc-based high entropy alloy [J]. Acta Mater., 2019, 177: 82
doi: 10.1016/j.actamat.2019.07.011
|
40 |
Zhuang X L, Antonov S, Li W D, et al. Alloying effects and effective alloy design of high-Cr CoNi-based superalloys via a high-throughput experiments and machine learning framework [J]. Acta Mater., 2023, 243: 118525
doi: 10.1016/j.actamat.2022.118525
|
41 |
Zou M, Li W D, Li L F, et al. Machine learning assisted design approach for developing γ'-strengthened Co-Ni-base superalloys [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 937
|
42 |
Caron P. High γ' solvus new generation nickel-based superalloys for single crystal turbine blade applications [A]. Superalloys 2000 [C]. Warrendale: TMS, 2000: 737
|
43 |
Suzuki A, Pollock T M. High-temperature strength and deformation of γ/γ' two-phase Co-Al-W-base alloys [J]. Acta Mater., 2008, 56: 1288
doi: 10.1016/j.actamat.2007.11.014
|
44 |
Meher S, Nag S, Tiley J, et al. Coarsening kinetics of γ' precipitates in cobalt-base alloys [J]. Acta Mater., 2013, 61: 4266
doi: 10.1016/j.actamat.2013.03.052
|
45 |
Vorontsov V A, Barnard J S, Rahman K M, et al. Coarsening behaviour and interfacial structure of γ' precipitates in Co-Al-W based superalloys [J]. Acta Mater., 2016, 120: 14
doi: 10.1016/j.actamat.2016.08.023
|
46 |
Zhou H J, Xue F, Chang H, et al. Effect of Mo on microstructural characteristics and coarsening kinetics of γ' precipitates in Co-Al-W-Ta-Ti alloys [J]. J. Mater. Sci. Technol., 2018, 34: 799
doi: 10.1016/j.jmst.2017.04.012
|
47 |
Neumeier S, Rehman H U, Neuner J, et al. Diffusion of solutes in fcc cobalt investigated by diffusion couples and first principles kinetic Monte Carlo [J]. Acta Mater., 2016, 106: 304
doi: 10.1016/j.actamat.2016.01.028
|
48 |
Lee C S. Precipitation-hardening characteristics of ternary cobalt-aluminum-X alloys [D]. Tucson: The University of Arizona, 1971
|
49 |
Pollock T M. Alloy design for aircraft engines [J]. Nat. Mater., 2016, 15: 809
doi: 10.1038/nmat4709
pmid: 27443900
|
50 |
Chen Y C, Wang C P, Ruan J J, et al. Development of low-density γ/γ' Co-Al-Ta-based superalloys with high solvus temperature [J]. Acta Mater., 2020, 188: 652
doi: 10.1016/j.actamat.2020.02.049
|
51 |
Chen Y C, Wang C P, Ruan J J, et al. High-strength Co-Al-V-base superalloys strengthened by γ'-Co3(Al, V) with high solvus temperature [J]. Acta Mater., 2019, 170: 62
doi: 10.1016/j.actamat.2019.03.013
|
52 |
Ruan J J, Liu X J, Yang S Y, et al. Novel Co-Ti-V-base superalloys reinforced by L12-ordered γ' phase [J]. Intermetallics, 2018, 92: 126
doi: 10.1016/j.intermet.2017.09.015
|
53 |
Zenk C H, Volz N, Bezold A, et al. The effect of alloying on the thermophysical and mechanical properties of Co-Ti-Cr-based superalloys [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 909
|
54 |
Forsik S A J, Polar Rosas A O, Wang T, et al. High-temperature oxidation behavior of a novel Co-base superalloy [J]. Metall. Mater. Trans., 2018, 49A: 4058
|
55 |
Volz N, Zenk C H, Cherukuri R, et al. Thermophysical and mechanical properties of advanced single crystalline Co-base superalloys [J]. Metall. Mater. Trans., 2018, 49A: 4099
|
56 |
Knop M, Mulvey P, Ismail F, et al. A new polycrystalline Co-Ni superalloy [J]. JOM, 2014, 66: 2495
doi: 10.1007/s11837-014-1175-9
|
57 |
Titus M S, Eggeler Y M, Suzuki A, et al. Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys [J]. Acta Mater., 2015, 82: 530
doi: 10.1016/j.actamat.2014.08.033
|
58 |
Bocchini P J, Sudbrack C K, Noebe R D, et al. Temporal evolution of a model Co-Al-W superalloy aged at 650oC and 750oC [J]. Acta Mater., 2018, 159: 197
doi: 10.1016/j.actamat.2018.08.014
|
59 |
Shinagawa K, Omori T, Oikawa K, et al. Ductility enhancement by boron addition in Co-Al-W high-temperature alloys [J]. Scr. Mater., 2009, 61: 612
doi: 10.1016/j.scriptamat.2009.05.037
|
60 |
Xu Y T, Xia T D, Yan J Q, et al. Effect of alloying elements on oxidation behavior of Co-Al-W alloys at high temperature [J]. Chin. J. Nonferrous Met., 2010, 20: 2168
doi: 10.1016/S1003-6326(09)60437-4
|
60 |
徐仰涛, 夏天东, 闫健强 等. 合金元素对Co-Al-W合金高温氧化行为的影响 [J]. 中国有色金属学报, 2010, 20: 2168
|
61 |
Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel Co-based superalloys: A review [J]. Acta Metall. Sin., 2020, 56: 1
|
61 |
刘兴军, 陈悦超, 卢 勇 等. 新型钴基高温合金多尺度设计的研究现状与展望 [J]. 金属学报, 2020, 56: 1
|
62 |
Zhu L L, Wei C D, Qi H Y, et al. Experimental investigation of phase equilibria in the Co-rich part of the Co-Al-X (X = W, Mo, Nb, Ni, Ta) ternary systems using diffusion multiples [J]. J. Alloys Compd., 2017, 691: 110
doi: 10.1016/j.jallcom.2016.08.210
|
63 |
Cao B X, Kong H J, Ding Z Y, et al. A novel L12-strengthened multicomponent Co-rich high-entropy alloy with both high γ'-solvus temperature and superior high-temperature strength [J]. Scr. Mater., 2021, 199: 113826
doi: 10.1016/j.scriptamat.2021.113826
|
64 |
Guan Y, Liu Y C, Ma Z Q, et al. Investigation on γ' stability in CoNi-based superalloys during long-term aging at 900oC [J]. J. Alloys Compd., 2020, 842: 155891
doi: 10.1016/j.jallcom.2020.155891
|
65 |
Shi L, Yu J J, Cui C Y, et al. Microstructural stability and tensile properties of a Ti-containing single-crystal Co-Ni-Al-W-base alloy [J]. Mater. Sci. Eng., 2015, A646: 45
|
66 |
Fan Z D, Wang X G, Yang Y H, et al. Plastic deformation behaviors and mechanical properties of advanced single crystalline CoNi-base superalloys [J]. Mater. Sci. Eng., 2019, A748: 267
|
67 |
Chen J, Guo M, Yang M, et al. Double minimum creep processing and mechanism for γ' strengthened cobalt-based superalloy [J]. J. Mater. Sci. Technol., 2022, 112: 123
doi: 10.1016/j.jmst.2021.10.015
|
68 |
Zhu J, Titus M S, Pollock T M. Experimental investigation and thermodynamic modeling of the Co-rich region in the Co-Al-Ni-W quaternary system [J]. J. Phase Equilib. Diffus., 2014, 35: 595
doi: 10.1007/s11669-014-0327-5
|
69 |
Chen T L, Guo C P, Li C R, et al. Experimental investigation of the phase relations in the Al-Co-Ti system [J]. J. Phase Equilib. Diffus., 2019, 40: 254
doi: 10.1007/s11669-019-00722-2
|
70 |
Zhou C Y, Guo C P, Li J B, et al. Experimental investigations of the Co-Ni-Ti system: Liquidus surface projection and isothermal section at 1373 K [J]. J. Alloys Compd., 2018, 754: 268
doi: 10.1016/j.jallcom.2018.04.253
|
71 |
Zhou C Y, Guo C P, Li C R, et al. Investigation on the intermetallic compound Co3Ta and high-temperature phase equilibria in the Co-Ni-Ta system [J]. Intermetallics, 2019, 108: 1
doi: 10.1016/j.intermet.2019.02.002
|
72 |
Yang S Y. Thermodynamic analysis and alloy design of Co-Al-W based superalloys [D]. Shenyang: Northeastern University, 2012
|
72 |
杨舒宇. Co-Al-W基高温合金热力学分析及合金设计 [D]. 沈阳: 东北大学, 2012
|
73 |
Ruan J J, Xu W W, Yang T, et al. Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γ' region by machine learning and CALPHAD methods [J]. Acta Mater., 2020, 186: 425
doi: 10.1016/j.actamat.2020.01.004
|
74 |
Zhuang X L, Lu S, Li L F, et al. Microstructures and properties of a novel γ'-strengthened multi-component CoNi-based wrought superalloy designed by CALPHAD method [J]. Mater. Sci. Eng., 2020, A780: 139219
|
75 |
Jiang C. First-principles study of Co3(Al, W) alloys using special quasi-random structures [J]. Scr. Mater., 2008, 59: 1075
doi: 10.1016/j.scriptamat.2008.07.021
|
76 |
Kobayashi S, Tsukamoto Y, Takasugi T, et al. Determination of phase equilibria in the Co-rich Co-Al-W ternary system with a diffusion-couple technique [J]. Intermetallics, 2009, 17: 1085
doi: 10.1016/j.intermet.2009.05.009
|
77 |
Chen M, Wang C Y. First-principle investigation of 3d transition metal elements in γ'-Co3(Al, W) [J]. J. Appl. Phys., 2010, 107: 093705
|
78 |
Xu W W, Han J J, Wang Z W, et al. Thermodynamic, structural and elastic properties of Co3 X (X = Ti, Ta, W, V, Al) compounds from first-principles calculations [J]. Intermetallics, 2013, 32: 303
doi: 10.1016/j.intermet.2012.08.022
|
79 |
Gao Q Z, Zhang X M, Ma Q S, et al. Accelerating design of novel Cobalt-based superalloys based on first-principles calculations [J]. J. Alloys Compd., 2022, 927: 167012
doi: 10.1016/j.jallcom.2022.167012
|
80 |
Zhao J C, Zheng X, Cahill D G. High-throughput diffusion multiples [J]. Mater. Today, 2005, 8: 28
|
81 |
Suzuki A, Morra M M, Larsen M. Cobalt-nickel superalloys, and related articles [P]. US Pat, 20110268989A1, 2010
|
82 |
Li W D, Li L F, Antonov S, et al. High-throughput exploration of alloying effects on the microstructural stability and properties of multi-component CoNi-base superalloys [J]. J. Alloys Compd., 2021, 881: 160618
doi: 10.1016/j.jallcom.2021.160618
|
83 |
Stewart C A, Suzuki A, Rhein R K, et al. Oxidation behavior across composition space relevant to Co-based γ/γ' alloys [J]. Metall. Mater. Trans., 2019, 50A: 5445
|
84 |
Fan L L, Li Y, Zhao X Y, et al. High-throughput preparation and characterization of early hot-corrosion behaviors of compositional gradient Al-Cr complex coatings on a novel Co-Al-W-based alloy [J]. Corros. Sci., 2021, 192: 109811
doi: 10.1016/j.corsci.2021.109811
|
85 |
Zhongguancun Material Testing Technology Alliance. T/CSTM 00120—2019 general rule for materials genome engineering data [S]. 2019
|
85 |
中关村材料试验技术联盟. T/CSTM 00120-2019 材料基因工程数据通则 [S]. 2019
|
86 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
|
86 |
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
87 |
Liu P, Huang H Y, Antonov S, et al. Machine learning assisted design of γ'-strengthened Co-base superalloys with multi-performance optimization [J]. npj Comput. Mater., 2020, 6: 62
doi: 10.1038/s41524-020-0334-5
|
88 |
Lu S, Zou M, Zhang X R, et al. Data-driven “cross-component” design and optimization of γ'-strengthened Co-based superalloys [J]. Adv. Eng. Mater., 2023, 25: 2201257
doi: 10.1002/adem.v25.10
|
89 |
Yu J X, Wang C L, Chen Y C, et al. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data [J]. Mater. Des., 2020, 195: 108996
doi: 10.1016/j.matdes.2020.108996
|
90 |
Lu S, Antonov S, Li L F, et al. Two steady-state creep stages in Co-Al-W-base single-crystal superalloys at 1273 K/137 MPa [J]. Met-all. Mater. Trans., 2018, 49A: 4079
|
91 |
Lu S, Antonov S, Li L F, et al. Atomic structure and elemental segregation behavior of creep defects in a Co-Al-W-based single crystal superalloys under high temperature and low stress [J]. Acta Mater., 2020, 190: 16
doi: 10.1016/j.actamat.2020.03.015
|
92 |
Lu S, Luo Z E, Li L F, et al. Comparison of creep mechanisms between Co-Al-W- and CoNi-based single crystal superalloys at low temperature and high stresses [J]. Metall. Mater. Trans., 2023, 54A: 1597
|
93 |
Shi L, Yu J J, Cui C Y, et al. The creep deformation behavior of a single-crystal Co-Al-W-base superalloy at 900oC [J]. Mater. Sci. Eng., 2015, A635: 50
|
94 |
Lenz M, Eggeler Y M, Müller J, et al. Tension/Compression asymmetry of a creep deformed single crystal Co-base superalloy [J]. Acta Mater., 2019, 166: 597
doi: 10.1016/j.actamat.2018.12.053
|
95 |
Tanaka K, Ooshima M, Tsuno N, et al. Creep deformation of single crystals of new Co-Al-W-based alloys with fcc/L12 two-phase microstructures [J]. Philos. Mag., 2012, 92: 4011
doi: 10.1080/14786435.2012.700416
|
96 |
Titus M S. High temperature deformation mechanisms of L12-containing Co-based superalloys [D]. Santa Barbara: University of California, 2015
|
97 |
Titus M S, Rettberg L H, Pollock T M. High temperature creep of γ'-containing CoNi-based superalloys [A]. Superalloys 2016 [C]. Hoboken: Wiley, 2016: 141
|
98 |
Zhou H J, Li L F, Antonov S, et al. Sub/micro-structural evolution of a Co-Al-W-Ta-Ti single crystal superalloy during creep at 900oC and 420 MPa [J]. Mater. Sci. Eng., 2020, A772: 138791
|
99 |
Tetzlaff U, Mughrabi H. Enhancement of the high-temperature tensile creep strength of monocrystalline nickel-base superalloys by pre-rafting in compression [A]. Superalloys 2000 [C]. Warrendale: TMS, 2000: 273
|
100 |
Chung D W, Ng D S, Dunand D C. Influence of γ'-raft orientation on creep resistance of monocrystalline Co-based superalloys [J]. Materialia, 2020, 12: 100678
doi: 10.1016/j.mtla.2020.100678
|
101 |
Rae C M F, Reed R C. Primary creep in single crystal superalloys: Origins, mechanisms and effects [J]. Acta Mater., 2007, 55: 1067
doi: 10.1016/j.actamat.2006.09.026
|
102 |
Lenz M, Wu M J, He J Y, et al. Atomic structure and chemical composition of planar fault structures in Co-base superalloys [A]. Superalloys 2000 [C]. Cham: Springer, 2020: 920
|
103 |
Li Q J, Li J, Shan Z W, et al. Strongly correlated breeding of high-speed dislocations [J]. Acta Mater., 2016, 119: 229
doi: 10.1016/j.actamat.2016.07.053
|
104 |
Lu S, Antonov S, Xue F, et al. Segregation-assisted phase transformation and anti-phase boundary formation during creep of a γ'-strengthened Co-based superalloy at high temperatures [J]. Acta Mater., 2021, 215: 117099
doi: 10.1016/j.actamat.2021.117099
|
105 |
Smith T M, Good B S, Gabb T P, et al. Effect of stacking fault segregation and local phase transformations on creep strength in Ni-base superalloys [J]. Acta Mater., 2019, 172: 55
doi: 10.1016/j.actamat.2019.04.038
|
106 |
Lilensten L, Kürnsteiner P, Mianroodi J R, et al. Segregation of solutes at dislocations: A new alloy design parameter for advanced superalloys [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 41
|
107 |
Zhang Y, Li J S, Wang W Y, et al. When a defect is a pathway to improve stability: A case study of the L12 Co3TM superlattice intrinsic stacking fault [J]. J. Mater. Sci., 2019, 54: 13609
doi: 10.1007/s10853-019-03884-z
|
108 |
Wang W Y, Xue F, Zhang Y, et al. Atomic and electronic basis for solutes strengthened (010) anti-phase boundary of L12 Co3(Al, TM): A comprehensive first-principles study [J]. Acta Mater., 2018, 145: 30
doi: 10.1016/j.actamat.2017.10.041
|
109 |
Titus M S, Mottura A, Babu Viswanathan G, et al. High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys [J]. Acta Mater., 2015, 89: 423
doi: 10.1016/j.actamat.2015.01.050
|
110 |
Titus M S, Rhein R K, Wells P B, et al. Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects [J]. Sci. Adv., 2016, 2: e1601796
doi: 10.1126/sciadv.1601796
|
111 |
Barba D, Smith T M, Miao J, et al. Segregation-assisted plasticity in Ni-based superalloys [J]. Metall. Mater. Trans., 2018, 49A: 4173
|
112 |
Makineni S K, Kumar A, Lenz M, et al. On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy [J]. Acta Mater., 2018, 155: 362
doi: 10.1016/j.actamat.2018.05.074
|
113 |
He J Y, Zenk C H, Zhou X Y, et al. On the atomic solute diffusional mechanisms during compressive creep deformation of a Co-Al-W-Ta single crystal superalloy [J]. Acta Mater., 2020, 184: 86
doi: 10.1016/j.actamat.2019.11.035
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|