Please wait a minute...
金属学报  2021, Vol. 57 Issue (1): 95-102    DOI: 10.11900/0412.1961.2020.00125
  研究论文 本期目录 | 过刊浏览 |
TiZr-Nb二元合金β结构稳定性和力学性能的影响
王明康1, 苑峻豪1, 刘宇峰2, 王清1(), 董闯1, 张中伟3
1.大连理工大学 材料科学与工程学院 三束材料改性教育部重点实验室 大连 116024
2.航天材料及工艺研究所 先进功能复合材料技术重点实验室 北京 100076
3.北京理工大学 先进结构技术研究院 北京 100081
Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys
WANG Mingkang1, YUAN Junhao1, LIU Yufeng2, WANG Qing1(), DONG Chuang1, ZHANG Zhongwei3
1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.Science and Technology of Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
3.Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
引用本文:

王明康, 苑峻豪, 刘宇峰, 王清, 董闯, 张中伟. TiZr-Nb二元合金β结构稳定性和力学性能的影响[J]. 金属学报, 2021, 57(1): 95-102.
Mingkang WANG, Junhao YUAN, Yufeng LIU, Qing WANG, Chuang DONG, Zhongwei ZHANG. Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. Acta Metall Sin, 2021, 57(1): 95-102.

全文: PDF(47442 KB)   HTML
摘要: 

利用团簇成分式方法设计了[Zr-Zr14](Zr, Nb)3系列二元合金,进而采用Ti替代部分Zr形成三元合金;采用真空铜模吸铸快冷技术制备合金棒材,利用XRD、OM、TEM等对其进行微观组织表征和力学性能测试。结果表明,随着Nb含量增加,Zr-Nb二元合金基体结构从hcp-α向bcc-β转变,β结构稳定的同时伴随有ω相析出。适量Ti添加可显著抑制ω相的析出,进一步改善了合金的β结构稳定性。其中,单相bcc-β合金[Ti-Zr14]Nb3 (Zr-17.37Nb-2.98Ti,质量分数,%)表现出低弹性模量(E=57 GPa)的同时具有最佳的力学性能(屈服强度σYS=557 MPa、延伸率δ=15.5%)。

关键词 Zr-Nb-Ti合金结构稳定性团簇成分式弹性模量力学性能    
Abstract

Metastable bcc β-Zr alloys generally have low elastic modulus, magnetic susceptibility, good mechanical properties, corrosion resistance, and biocompatibility, which are ascribed to co-alloying of multiple elements to enhance the structural stability of the bcc-β phase. This work systematically investigated the effects of Nb and Ti elements on the structural stability of the bcc-β phase and mechanical properties of Zr-Nb-Ti alloys. Various binary [Zr-Zr14](Zr, Nb)3 alloy compositions were designed by the cluster formula approach, based on which Ti was substituted for the base Zr to form ternary alloys. Alloy rods were prepared by the copper-mold suction-cast method with vacuum protection. The microstructure and mechanical properties of the alloys were characterized using XRD, OM, and TEM etc. The results show that the crystal structures of the Zr-Nb binary alloys could change from hcp-α to bcc-β with increasing Nb content, whereas, the ω-phase always coexists with the β-phase. An appropriate amount of Ti addition can significantly inhibit the precipitation of ω, resulting in the further improvement of the stability of the β-phase. The single β-[Ti-Zr14]Nb3 (Zr-17.37Nb-2.98Ti, mass fraction, %) ternary alloy exhibited not only a low elastic modulus of E=57 GPa but also a good tensile property with a high yield strength of σYS=557 MPa and an elongation of δ=15.5%.

Key wordsZr-Nb-Ti alloy    structural stability    cluster formula approach    elastic modulus    mechanical property
收稿日期: 2020-04-20     
ZTFLH:  TG146.414  
基金资助:国家重点研发计划项目(2017YFB0702401);国家自然科学基金项目(91860108);辽宁省自然科学基金项目(2019-KF-05-01)
作者简介: 王明康,男,1996年生,硕士生
图1  系列合金的XRD谱和典型合金的OM像
图2  [Zr-Zr14](Zr, Nb)3系列合金的TEM明场(BF)和暗场(DF)像及其对应的SAED花样
图3  [Ti-Zr14](Ti, Nb)3系列合金的TEM明场和暗场像及其对应的SAED 花样
图4  系列合金的工程应力-应变拉伸曲线
AlloyPhase constitutionEσYSσUTSδMicrohardnessNbeq (mass
GPaMPaMPa%HVfraction / %)
MatrixSecond
phase
N1α(α')β71±2678±16785±105.5±0.4265±85.65
N2βω96±2-692±12-415±78.47
N3βω59±1559±12603±813.8±0.6194±616.92
TN3β-57±1557±9584±1115.5±0.5195±320.12
T1N2βα+ω64±3496±16847±717.4±0.8237±617.75
Zr-19.2Nbβω55±1488±15515±1012.2±0.6190±619.20
表1  设计系列合金的相组成及力学性能
图5  系列合金弹性模量以及硬度、强度和延伸率随Nbeq和相组成的变化
1 Yamamoto A, Honma R, Sumita M. Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells [J]. J. Biomed. Mater. Res., 1998, 39: 331
2 Guo S F, Liu Z, Chan K C, et al. A plastic Ni-free Zr-based bulk metallic glass with high specific strength and good corrosion properties in simulated body fluid [J]. Mater. Lett., 2012, 84: 81
3 Mantripragada V P, Lecka-Czernik B, Ebraheim N A, et al. An overview of recent advances in designing orthopedic and craniofacial implants [J]. J. Biomed. Mater. Res., 2013, 101A: 3349
4 Li H F, Zhou F Y, Li L, et al. Design and development of novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility [J]. Sci. Rep., 2016, 6: 24414
5 Pêcheur D, Lefebvre F, Motta A T, et al. Effect of irradiation on the precipitate stability in Zr alloys [J]. J. Nucl. Mater., 1993, 205: 445
6 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review [J]. Prog. Mater Sci., 2009, 54: 397
7 Li Y H, Yang C, Zhao H D, et al. New developments of Ti-based alloys for biomedical applications [J]. Materials, 2014, 7: 1709
8 Suyalatu, Nomura N, Oya K, et al. Microstructure and magnetic susceptibility of as-cast Zr-Mo alloys [J]. Acta Biomater., 2010, 6: 1033
9 Yang H L, Kano S, Matsukawa Y, et al. Study on recrystallization and correlated mechanical properties in Mo-modified Zr-Nb alloys [J]. Mater. Sci. Eng., 2016, A661: 9
10 Š Zuzjaková, Zeman P, Haviar S, et al. Thermal stability of structure, microstructure and enhanced properties of Zr-Ta-O films with a low and high Ta content [J]. Surf. Coat. Technol., 2018, 335: 95
11 Pang C, Wang Q, Zhang R Q, et al. β Zr-Nb-Ti-Mo-Sn alloys with low Young􀆳s modulus and low magnetic susceptibility optimized via a cluster-plus-glue-atom model [J]. Mater. Sci. Eng., 2015, A626: 369
12 Cai S, Daymond M R, Khan A K, et al. Elastic and plastic properties of βZr at room temperature [J]. J. Nucl. Mater., 2009, 393: 67
13 Kondo R, Nomura N, Suyalatu, et al. Microstructure and mechanical properties of as-cast Zr-Nb alloys [J]. Acta Biomater., 2011, 7: 4278
14 Kondo R, Shimizu R, Nomura N, et al. Effect of cold rolling on the magnetic susceptibility of Zr-14Nb alloy [J]. Acta Biomater., 2013, 9: 5795
15 Dey G K, Tewari R, Banerjee S, et al. Formation of a shock deformation induced ω phase in Zr-20Nb alloy [J]. Acta Mater., 2004, 52: 5243
16 Srivastava D, Mukhopadhyay P, Banerjee S, et al. Morphology and substructure of lath martensites in dilute Zr-Nb alloys [J]. Mater. Sci. Eng., 2000, A288: 101
17 Ikeda M, Miyazaki T, Doi S, et al. Phase constitution and heat treatment behavior of Zr-Nb alloys [J]. Mater. Sci. Forum, 2007, 561: 1435
18 Dey G K, Tewari R, Banerjee S, et al. Formation of a shock deformation induced ω phase in Zr-20Nb alloy [J]. Acta Mater., 2004, 52: 5243
19 Banerjee S, Krishnan R. Martensitic transformation in zirconium-niobium alloys [J]. Acta Metall., 1971, 19: 1317
20 Dey G K, Singh R N, Tewari R, et al. Metastability of the β-phase in Zr-rich Zr-Nb alloys [J]. J. Nucl. Mater., 1995, 224: 146
21 Jiang B B, Wang Q, Wen D H, et al. Effects of Nb and Zr on structural stabilities of Ti-Mo-Sn-based alloys with low modulus [J]. Mater. Sci. Eng., 2017, A687: 1
22 Jiang B B, Wang Q, Li X N, et al. Structural stability of the metastable β-[(Mo0.5Sn0.5)-(Ti13Zr1)]Nb1 alloy with low Young's modulus at different states [J]. Metall. Mater. Trans., 2017, 48A: 3912
23 Pang C, Jiang B B, Shi Y, et al. Cluster-plus-glue-atom model and universal composition formulas [cluster](glue atom)x for BCC solid solution alloys [J]. J. Alloys Compd., 2015, 652: 63
24 Hong H L, Wang Q, Dong C, et al. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys [J]. Sci. Rep., 2014, 4: 7065
25 Wang Q, Ji C J, Wang Y M, et al. β-Ti alloys with low Young􀆳s moduli interpreted by cluster-plus-glue-atom model [J]. Metall. Mater. Trans., 2013, 44A: 1872
26 Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys—An overview [J]. Mater. Sci. Eng., 1998, A243: 46
27 Wang Q, Dong C, Liaw P K. Structural stabilities of β-Ti alloys studied using a new Mo equivalent derived from [β/(α+β)] phase-boundary slopes [J]. Metall. Mater. Trans., 2015, 46A: 3440
28 Zhang J Y, Fan S, Hao Y L, et al. Influence of equiatomic Zr/Nb substitution on superelastic behavior of Ti-Nb-Zr alloy [J]. Mater. Sci. Eng., 2013, A563: 78
29 Bagaryatskiy Y A, Nosova G I. On the crystalline structure and the nature of the ω-phase in titanium alloys with chrome [J]. Fiz. Met. Metalloved., 1962, 13: 415
30 Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
31 Ping D H, Mitarai Y, Yin F X. Microstructure and shape memory behavior of a Ti-30Nb-3Pd alloy [J]. Scr. Mater., 2005, 52: 1287
32 Banerjee S, Tewari R, Dey G K. Omega phase transformation-morphologies and mechanisms [J]. Z. Metallkd., 2006, 97: 963
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.