|
|
Ti对Zr-Nb二元合金β结构稳定性和力学性能的影响 |
王明康1, 苑峻豪1, 刘宇峰2, 王清1( ), 董闯1, 张中伟3 |
1.大连理工大学 材料科学与工程学院 三束材料改性教育部重点实验室 大连 116024 2.航天材料及工艺研究所 先进功能复合材料技术重点实验室 北京 100076 3.北京理工大学 先进结构技术研究院 北京 100081 |
|
Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys |
WANG Mingkang1, YUAN Junhao1, LIU Yufeng2, WANG Qing1( ), DONG Chuang1, ZHANG Zhongwei3 |
1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2.Science and Technology of Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China 3.Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China |
引用本文:
王明康, 苑峻豪, 刘宇峰, 王清, 董闯, 张中伟. Ti对Zr-Nb二元合金β结构稳定性和力学性能的影响[J]. 金属学报, 2021, 57(1): 95-102.
Mingkang WANG,
Junhao YUAN,
Yufeng LIU,
Qing WANG,
Chuang DONG,
Zhongwei ZHANG.
Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. Acta Metall Sin, 2021, 57(1): 95-102.
1 |
Yamamoto A, Honma R, Sumita M. Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells [J]. J. Biomed. Mater. Res., 1998, 39: 331
|
2 |
Guo S F, Liu Z, Chan K C, et al. A plastic Ni-free Zr-based bulk metallic glass with high specific strength and good corrosion properties in simulated body fluid [J]. Mater. Lett., 2012, 84: 81
|
3 |
Mantripragada V P, Lecka-Czernik B, Ebraheim N A, et al. An overview of recent advances in designing orthopedic and craniofacial implants [J]. J. Biomed. Mater. Res., 2013, 101A: 3349
|
4 |
Li H F, Zhou F Y, Li L, et al. Design and development of novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility [J]. Sci. Rep., 2016, 6: 24414
|
5 |
Pêcheur D, Lefebvre F, Motta A T, et al. Effect of irradiation on the precipitate stability in Zr alloys [J]. J. Nucl. Mater., 1993, 205: 445
|
6 |
Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review [J]. Prog. Mater Sci., 2009, 54: 397
|
7 |
Li Y H, Yang C, Zhao H D, et al. New developments of Ti-based alloys for biomedical applications [J]. Materials, 2014, 7: 1709
|
8 |
Suyalatu, Nomura N, Oya K, et al. Microstructure and magnetic susceptibility of as-cast Zr-Mo alloys [J]. Acta Biomater., 2010, 6: 1033
|
9 |
Yang H L, Kano S, Matsukawa Y, et al. Study on recrystallization and correlated mechanical properties in Mo-modified Zr-Nb alloys [J]. Mater. Sci. Eng., 2016, A661: 9
|
10 |
Š Zuzjaková, Zeman P, Haviar S, et al. Thermal stability of structure, microstructure and enhanced properties of Zr-Ta-O films with a low and high Ta content [J]. Surf. Coat. Technol., 2018, 335: 95
|
11 |
Pang C, Wang Q, Zhang R Q, et al. β Zr-Nb-Ti-Mo-Sn alloys with low Youngs modulus and low magnetic susceptibility optimized via a cluster-plus-glue-atom model [J]. Mater. Sci. Eng., 2015, A626: 369
|
12 |
Cai S, Daymond M R, Khan A K, et al. Elastic and plastic properties of βZr at room temperature [J]. J. Nucl. Mater., 2009, 393: 67
|
13 |
Kondo R, Nomura N, Suyalatu, et al. Microstructure and mechanical properties of as-cast Zr-Nb alloys [J]. Acta Biomater., 2011, 7: 4278
|
14 |
Kondo R, Shimizu R, Nomura N, et al. Effect of cold rolling on the magnetic susceptibility of Zr-14Nb alloy [J]. Acta Biomater., 2013, 9: 5795
|
15 |
Dey G K, Tewari R, Banerjee S, et al. Formation of a shock deformation induced ω phase in Zr-20Nb alloy [J]. Acta Mater., 2004, 52: 5243
|
16 |
Srivastava D, Mukhopadhyay P, Banerjee S, et al. Morphology and substructure of lath martensites in dilute Zr-Nb alloys [J]. Mater. Sci. Eng., 2000, A288: 101
|
17 |
Ikeda M, Miyazaki T, Doi S, et al. Phase constitution and heat treatment behavior of Zr-Nb alloys [J]. Mater. Sci. Forum, 2007, 561: 1435
|
18 |
Dey G K, Tewari R, Banerjee S, et al. Formation of a shock deformation induced ω phase in Zr-20Nb alloy [J]. Acta Mater., 2004, 52: 5243
|
19 |
Banerjee S, Krishnan R. Martensitic transformation in zirconium-niobium alloys [J]. Acta Metall., 1971, 19: 1317
|
20 |
Dey G K, Singh R N, Tewari R, et al. Metastability of the β-phase in Zr-rich Zr-Nb alloys [J]. J. Nucl. Mater., 1995, 224: 146
|
21 |
Jiang B B, Wang Q, Wen D H, et al. Effects of Nb and Zr on structural stabilities of Ti-Mo-Sn-based alloys with low modulus [J]. Mater. Sci. Eng., 2017, A687: 1
|
22 |
Jiang B B, Wang Q, Li X N, et al. Structural stability of the metastable β-[(Mo0.5Sn0.5)-(Ti13Zr1)]Nb1 alloy with low Young's modulus at different states [J]. Metall. Mater. Trans., 2017, 48A: 3912
|
23 |
Pang C, Jiang B B, Shi Y, et al. Cluster-plus-glue-atom model and universal composition formulas [cluster](glue atom)x for BCC solid solution alloys [J]. J. Alloys Compd., 2015, 652: 63
|
24 |
Hong H L, Wang Q, Dong C, et al. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys [J]. Sci. Rep., 2014, 4: 7065
|
25 |
Wang Q, Ji C J, Wang Y M, et al. β-Ti alloys with low Youngs moduli interpreted by cluster-plus-glue-atom model [J]. Metall. Mater. Trans., 2013, 44A: 1872
|
26 |
Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys—An overview [J]. Mater. Sci. Eng., 1998, A243: 46
|
27 |
Wang Q, Dong C, Liaw P K. Structural stabilities of β-Ti alloys studied using a new Mo equivalent derived from [β/(α+β)] phase-boundary slopes [J]. Metall. Mater. Trans., 2015, 46A: 3440
|
28 |
Zhang J Y, Fan S, Hao Y L, et al. Influence of equiatomic Zr/Nb substitution on superelastic behavior of Ti-Nb-Zr alloy [J]. Mater. Sci. Eng., 2013, A563: 78
|
29 |
Bagaryatskiy Y A, Nosova G I. On the crystalline structure and the nature of the ω-phase in titanium alloys with chrome [J]. Fiz. Met. Metalloved., 1962, 13: 415
|
30 |
Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
|
31 |
Ping D H, Mitarai Y, Yin F X. Microstructure and shape memory behavior of a Ti-30Nb-3Pd alloy [J]. Scr. Mater., 2005, 52: 1287
|
32 |
Banerjee S, Tewari R, Dey G K. Omega phase transformation-morphologies and mechanisms [J]. Z. Metallkd., 2006, 97: 963
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|