Please wait a minute...
金属学报  2022, Vol. 58 Issue (8): 1044-1054    DOI: 10.11900/0412.1961.2021.00023
  研究论文 本期目录 | 过刊浏览 |
选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能
耿遥祥(), 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林
江苏科技大学 材料科学与工程学院 镇江 212003
Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting
GENG Yaoxiang(), TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
引用本文:

耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
Yaoxiang GENG, Hao TANG, Junhua XU, Zhijie ZHANG, Lihua YU, Hongbo JU, Le JIANG, Jianglin JIAN. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. Acta Metall Sin, 2022, 58(8): 1044-1054.

全文: PDF(3381 KB)   HTML
摘要: 

基于选区激光熔化(SLM)技术熔体急冷的特点,通过同时增加(Mn + Mg)和(Sc + Zr)合金化元素的含量,设计了SLM专用Al-(Mn, Mg)-(Sc, Zr)合金,系统研究了时效温度对合金组织和力学性能影响。结果表明,合金表现出良好的SLM成形性,不同激光扫描速率下制备样品的致密度均超过99.0%。样品具有典型的熔池状显微结构,熔池边界为等轴晶,熔池内部包含少量的柱状晶,晶粒的平均尺寸约为4 μm。经低温(≤ 350℃)时效处理后,由于Al3Sc纳米颗粒的大量析出,使得样品的力学性能大幅提升。样品的最大Vickers硬度为(218 ± 5) HV,最大压缩屈服强度和抗压强度分别达到(653 ± 3)和(752 ± 7) MPa,所有样品的压缩延伸率均超过60%。合金的强度超过现有报道的大多数SLM成形铝合金及经T6处理的AA7075铝合金。多种强化机制共同作用使得SLM成形Al-(Mn, Mg)-(Sc, Zr)合金具有高强度。

关键词 选区激光熔化Al-(Mn, Mg)-(Sc, Zr)合金时效处理力学性能    
Abstract

Selective laser melting (SLM) has been widely used in many fields owing to its high manufacturing accuracy and excellent performance. A rapid solidification rate of 103-106 K/s is achieved during the SLM process, resulting in unique microstructures and highly supersaturated solid solutions beyond the normal solubility limits of alloying elements, thereby providing new opportunities for the development of microstructures and optimization of their properties. To date, SLM has been used for manufacturing a wide range of metallic materials, such as Ti-based alloys, superalloys, and stainless steel. However, specific difficulties are associated with melting aluminum powder using a laser owing to the high laser reflectivity, tenacious surface oxide, poor spreadability (particularly of low-density aluminum powder), high thermal conductivity, and large freezing ranges of many aluminum alloys. Consequently, high-strength aluminum alloys, such as the 2xxx, 6xxx, and 7xxx series, exhibit poor SLM formability. The SLM-formed aluminum alloys that are practically applied in industries at present are limited to the Al-Si base and Al-Mg-(Sc, Zr) alloys. Al-Mg-(Sc, Zr) alloys achieve high strength and ductility with low mechanical anisotropy, thus showing considerable advantages over conventional and SLM-formed Al-Si-Mg alloys. However, the strength of the present SLM-formed aluminum alloys is still lower than that of conventional high-performance ones. Based on the technical characteristics of liquid quenching in SLM, this study focuses on designing high-strength Al-(Mn, Mg)-(Sc, Zr) aluminum alloys specifically for SLM by simultaneously increasing the (Mn + Mg) and (Sc + Zr) contents. The effect of aging treatment on the microstructure and mechanical properties of the SLM-formed alloy was systematically studied. Results show that the alloy exhibits good SLM formability with a relative density of more than 99.0%. A typical multilayer distribution of laser tracks generated in the SLM process can be observed. Few columnar grains are observed in the center of the molten pool, and numerous equiaxed grains are present in molten pool boundaries with an average grain size of 4 μm. The mechanical properties of the alloys are considerably improved after aging treatment at a low temperature (≤ 350°C) owing to the precipitation of Al3Sc nanoparticles. The maximum Vickers hardness, maximum compressive yield strength, and maximum compressive strength of the aged alloy are (218 ± 5) HV, (653 ± 3) MPa, and (752 ± 7) MPa, respectively, with a compressive elongation of greater than 60% for all samples, higher than that of most SLM-formed aluminum alloys and T6-treated AA7075 alloys. Combining various strengthening mechanisms facilitates SLM-formed Al-(Mn, Mg)-(Sc, Zr) alloys with high strength.

Key wordsselective laser melting    Al-(Mn, Mg)-(Sc, Zr) alloy    aging treatment    mechanical property
收稿日期: 2021-01-14     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52001140);国家自然科学基金项目(51801079);江苏省自然科学基金项目(BK20180985);江苏省自然科学基金项目(BK20180987)
作者简介: 耿遥祥,男,1986年生,副教授,博士
SpecimenMnMgScZrFeAl
Powder5.52.71.00.90.1Bal.
SLM-formed5.42.61.10.80.1Bal.
表1  Al-(Mn, Mg)-(Sc, Zr)粉末及选区激光熔化(SLM)成形样品的化学成分 (mass fraction / %)
图1  Al-(Mn, Mg)-(Sc, Zr)粉末样品表面及剖面SEM像及粉末尺寸分布
图2  SLM成形Al-(Mn, Mg)-(Sc, Zr)样品宏观照片
图3  SLM成形Al-(Mn, Mg)-(Sc, Zr)样品相对密度随激光扫描速率的变化曲线
图4  不同激光扫描速率下获得SLM成形Al-(Mn, Mg)-(Sc, Zr)样品的OM像及样品上表面SEM像
图5  激光扫描速率为900 mm/s时SLM成形Al-(Mn, Mg)-(Sc, Zr)样品纵剖面的OM像和SEM像及析出相成分分析
图6  激光扫描速率为900 mm/s时SLM成形Al-(Mn, Mg)-(Sc, Zr)样品EBSD分析结果
图7  SLM成形Al-(Mn, Mg)-(Sc, Zr)样品经200、300、400和500℃时效处理2 h后的OM像
图8  SLM成形Al-(Mn, Mg)-(Sc, Zr)样品经200、300、400和500℃时效处理2 h后熔池内部的SEM像
图9  SLM成形Al-(Mn, Mg)-(Sc, Zr)样品经不同温度时效2 h后的XRD谱
图10  SLM成形Al-(Mn, Mg)-(Sc, Zr)样品经不同温度时效处理后的Vickers硬度、压缩真应力-真应变曲线、压缩力学性能及与其他铝合金压缩性能对比结果
1 Zhang L C, Klemm D, Eckert J, et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy [J]. Scr. Mater., 2011, 65: 21
doi: 10.1016/j.scriptamat.2011.03.024
2 Lin X, Huang W D. Laser additive manufacturing of high-performance metal components [J]. Sci. China Inform. Sci., 2015, 45: 1111
2 林 鑫, 黄卫东. 高性能金属构件的激光增材制造 [J]. 中国科学: 信息科学, 2015, 45: 1111
3 Song B, Dong S J, Coddet C. Rapid in situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of microsized Fe and SiC [J]. Scr. Mater., 2014, 75: 90
doi: 10.1016/j.scriptamat.2013.11.031
4 Gu D D, Meng G B, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement [J]. Scr. Mater., 2012, 67: 185
doi: 10.1016/j.scriptamat.2012.04.013
5 Sing S L, An J, Yeong W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs [J]. J. Orthop. Res., 2016, 34: 369
doi: 10.1002/jor.23075
6 Geng Y X, Fan S M, Jian J L, et al. Mechanical properties of AlSiMg alloy specifically designed for selective laser melting [J]. Acta Metall. Sin., 2020, 56: 821
6 耿遥祥, 樊世敏, 简江林 等. 选区激光熔化专用AlSiMg合金成分设计及力学性能 [J]. 金属学报, 2020, 56: 821
doi: 10.11900/0412.1961.2019.00306
7 Zheng Z, Wang L F, Yan B. Research progress of metal materials for 3D printing [J]. Shanghai Nonferrous Met., 2016, 37: 57
7 郑 增, 王联凤, 严 彪. 3D打印金属材料研究进展 [J]. 上海有色金属, 2016, 37: 57
8 Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
8 林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
9 Mertens A I, Delahaye J, Lecomte-Beckers J. Fusion-based additive manufacturing for processing aluminum alloys: State-of-the-art and challenges [J]. Adv. Eng. Mater., 2017, 19: 170003
10 Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 40
11 Croteau J R, Griffiths S, Rossell M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting [J]. Acta Mater., 2018, 153: 35
doi: 10.1016/j.actamat.2018.04.053
12 Montero-Sistiaga M L, Mertens R, Vrancken B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting [J]. J. Mater. Process. Technol., 2016, 238: 437
doi: 10.1016/j.jmatprotec.2016.08.003
13 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
14 Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
14 张文奇, 朱海红, 胡志恒 等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53: 918
doi: 10.11900/0412.1961.2016.00472
15 Yan Q, Song B, Shi Y S. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting [J]. J. Mater. Sci. Technol., 2020, 41: 199
doi: 10.1016/j.jmst.2019.08.049
16 Dai D H, Gu D D, Zhang H, et al. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts [J]. Opt. Laser Technol., 2018, 99: 91
doi: 10.1016/j.optlastec.2017.08.015
17 Du D F, Haley J C, Dong A P, et al. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy [J]. Mater. Des., 2019, 181: 107923
doi: 10.1016/j.matdes.2019.107923
18 Li X P, Wang X J, Saunders M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility [J]. Acta Mater., 2015, 95: 74
doi: 10.1016/j.actamat.2015.05.017
19 Wang M, Song B, Wei Q S, et al. Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy [J]. Mater. Sci. Eng., 2019, A729: 463
20 Geng Y X, Wang Y M, Xu J H, et al. A high-strength AlSiMg1.4 alloy fabricated by selective laser melting [J]. J. Alloys Compd., 2021, 862: 159103
21 Hou Y, Geng Y X, Chen J H, et al. Selective laser melting of AlSiMg3 alloy with super-hardness [J]. Rare Met. Mater. Eng., 2020, 49: 3943
21 侯 裕, 耿遥祥, 陈金汉 等. 选区激光熔化成形高硬度AlSiMg3合金 [J]. 稀有金属材料与工程, 2020, 49: 3943
22 Nieh T G, Hsiung L M, Wadsworth J, et al. High strain rate superplasticity in a continuously recrystallized Al-6%Mg-0.3%Sc alloy [J]. Acta Mater., 1998, 46: 2789
doi: 10.1016/S1359-6454(97)00452-7
23 Xie Y H, Lu Z, Dai S L. Mechanical behavior of Al-6Mg-0.2Sc aluminum alloys at elevated temperature [J]. Mater. Eng., 2007, (3): 49
23 谢优华, 陆 政, 戴圣龙. Al-6Mg- 0.2Sc铝合金高温力学行为研究 [J]. 材料工程, 2007, (3): 49
24 Chen J H, Geng Y X, Hou Y, et al. Formation and mechanical properties of Al-Mg-Sc-Zr alloy prepared by selective laser melting [J]. Rare Met. Mater. Eng., 2020, 49: 3882
24 陈金汉, 耿遥祥, 侯 裕 等. 选区激光熔化Al-Mg-Sc-Zr合金成形性及力学性能 [J]. 稀有金属材料与工程, 2020, 49: 3882
25 Schmidtke K, Palm F, Hawkins A, et al. Process and mechanical properties: Applicability of a scandium modified Al-alloy for laser additive manufacturing [J]. Phys. Proced., 2011, 12: 369
doi: 10.1016/j.phpro.2011.03.047
26 Spierings A B, Dawson K, Kern K, et al. SLM-processed Sc- and Zr- modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment [J]. Mater. Sci. Eng., 2017, A701: 264
27 Spierings A B, Dawson K, Dumitraschkewitz P, et al. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition [J]. Addit. Manuf., 2018, 20: 173
28 Spierings A B, Dawson K, Uggowitzer P J, et al. Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc- and Zr-modified Al-Mg alloys [J]. Mater. Des., 2018, 140: 134
doi: 10.1016/j.matdes.2017.11.053
29 Jia Q B, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al-Mn-Sc alloy: Alloy design and strengthening mechanisms [J]. Acta Mater., 2019, 171: 108
doi: 10.1016/j.actamat.2019.04.014
30 Jia Q B, Zhang F, Rometsch P, et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al-Mn-Sc alloy fabricated by selective laser melting [J]. Acta Mater., 2020, 193: 239
doi: 10.1016/j.actamat.2020.04.015
31 Li R D, Wang M B, Li Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms [J]. Acta Mater., 2020, 193: 83
doi: 10.1016/j.actamat.2020.03.060
32 Li J. Design, preparation and properties of Al-Mg-(Sc, Zr) alloys for SLM [D]. Zhenjiang: Jiangsu University of Science and Technology, 2019
32 李 洁. SLM专用Al-Mg-(Sc, Zr)合金成分设计、制备及性能研究 [D]. 镇江: 江苏科技大学, 2019
33 Geng Y X, Tang H, Luo J J, et al. Processability and mechanical properties of high Mg-content Al-Mg-Sc-Zr alloy produced by selective laser melting [J]. Rare Met. Mater. Eng., 2021, 50: 939
33 耿遥祥, 唐 浩, 罗金杰 等. 高Mg含量Al-Mg-Sc-Zr合金选区激光熔化成形及力学性能研究 [J]. 稀有金属材料与工程, 2021, 50: 939
34 Tang H, Geng Y X, Luo J J, et al. Mechanical properties of high Mg-content Al-Mg-Sc-Zr alloy fabricated by selective laser melting [J]. Met. Mater. Int., 2021, 27: 2592
doi: 10.1007/s12540-020-00907-2
35 Li R D, Wang M B, Yuan T C, et al. Selective laser melting of a novel Sc and Zr modified Al-6.2Mg alloy: Processing, microstructure, and properties [J]. Powder Technol., 2017, 319: 117
doi: 10.1016/j.powtec.2017.06.050
36 Wang Z H, Lin X, Kang N, et al. Strength-ductility synergy of selective laser melted Al-Mg-Sc-Zr alloy with a heterogeneous grain structure [J]. Addit. Manuf., 2020, 34: 101260.
37 Røyset J, Ryum N. Scandium in aluminium alloys [J]. Int. Mater. Rev., 2005, 50: 19
doi: 10.1179/174328005X14311
38 Tang P J, He X L, Yang B, et al. Microstructure and properties of AlSi10Mg powder for selective laser melting [J]. J. Aeronaut. Mater., 2018, 38(1): 47
38 唐鹏钧, 何晓磊, 杨 斌 等. 激光选区熔化用AlSi10Mg粉末显微组织与性能 [J]. 航空材料学报, 2018, 38(1): 47
39 Spierings A B, Schneider M, Eggenberger R. Comparison of density measurement techniques for additive manufactured metallic parts [J]. Rapid Prototyp. J., 2011, 17: 380
doi: 10.1108/13552541111156504
40 Weingarten C, Buchbinder D, Pirch N, et al. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg [J]. J. Mater. Process. Technol., 2015, 221: 112
doi: 10.1016/j.jmatprotec.2015.02.013
41 Zhang B C, Liao H L, Coddet C. Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture [J]. Mater. Des., 2012, 34: 753
doi: 10.1016/j.matdes.2011.06.061
42 Xiao R S, Zhang X Y. Problems and issues in laser beam welding of aluminum-lithium alloys [J]. J. Manuf. Process., 2014, 16: 166
doi: 10.1016/j.jmapro.2013.10.005
43 Aboulkhair N T, Everitt N M, Ashcroft I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting [J]. Addit. Manuf., 2014, 1-4: 77
44 Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
45 Griffiths S, Rossell M D, Croteau J, et al. Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy [J]. Mater. Charact., 2018, 143: 34
doi: 10.1016/j.matchar.2018.03.033
46 Spierings A B, Dawson K, Voegtlin M, et al. Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting [J]. CIRP Ann., 2016, 65: 213
doi: 10.1016/j.cirp.2016.04.057
47 Li R D, Chen H, Zhu H B, et al. Effect of aging treatment on the microstructure and mechanical properties of Al-3.02Mg-0.2Sc-0.1Zr alloy printed by selective laser melting [J]. Mater. Des., 2019, 168: 107668
doi: 10.1016/j.matdes.2019.107668
48 Yuan J H, Chen H M, Xie W B, et al. Work-softening mechanism of Cu-Cr-Ti-Si alloy [J]. J. Mater. Eng., 2020, 48(11): 140
48 袁继慧, 陈辉明, 谢伟滨 等. Cu-Cr-Ti-Si合金加工软化的机理 [J]. 材料工程, 2020, 48(11): 140
49 Bi J, Lei Z L, Chen Y B, et al. Microstructure and mechanical properties of a novel Sc and Zr modified 7075 aluminum alloy prepared by selective laser melting [J]. Mater. Sci. Eng., 2019, A768: 138478
50 Kimura T, Nakamoto T, Ozaki T, et al. Microstructural formation and characterization mechanisms of selective laser melted Al-Si-Mg alloys with increasing magnesium content [J]. Mater. Sci. Eng., 2019, A754: 786
51 Drapala J, Kuchar L, Kursa M. Preparation of high purity metals by crystallization methods [J]. J. Phys. IV, 1995, 5: 143.
52 Xu G F, Peng X Y, Duan Y L, et al. Research advance on new Al-Mg-Sc-Zr and Al-Zn-Mg-Sc-Zr alloys [J]. Chin. J. Nonferrous Met., 2016, 26: 1577
52 徐国富, 彭小燕, 段雨露 等. 新型Al-Mg-Sc-Zr和Al-Zn-Mg-Sc-Zr合金的研究进展 [J]. 中国有色金属学报, 2016, 26: 1577
53 Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
doi: 10.1126/science.aal5166 pmid: 28336664
54 Varvenne C, Leyson G P M, Ghazisaeidi M, et al. Solute strengthening in random alloys [J]. Acta Mater., 2017, 124: 660
doi: 10.1016/j.actamat.2016.09.046
55 Forbord B, Auran L, Lefebvre W, et al. Rapid precipitation of dispersoids during extrusion of an Al-0.91 wt.%Mn-0.13 wt.%Zr-0.17 wt.%Sc-alloy [J]. Mater. Sci. Eng., 2006, A424: 174
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.