Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1372-1378    DOI: 10.11900/0412.1961.2016.00040
  本期目录 | 过刊浏览 |
新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*
孙敏1(),李晓刚2,李劲3
1 宝山钢铁股份有限公司研究院, 上海 2019002 北京科技大学材料科学与工程学院, 北京 1000833 复旦大学材料科学系, 上海 200433
STRESS CORROSION CRACKING BEHAVIOR OF A NEW KIND OF ULTRAHIGH STRENGTH STEEL Cr12Ni4Mo2Co14 IN ACID ENVIRONMENT
Min SUN1(),Xiaogang LI2,Jin LI3
1 Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China;
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 3 Department of Materials Science, Fudan University, Shanghai 200433, China ;
引用本文:

孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
Min SUN, Xiaogang LI, Jin LI. STRESS CORROSION CRACKING BEHAVIOR OF A NEW KIND OF ULTRAHIGH STRENGTH STEEL Cr12Ni4Mo2Co14 IN ACID ENVIRONMENT[J]. Acta Metall Sin, 2016, 52(11): 1372-1378.

全文: PDF(1446 KB)   HTML
摘要: 

采用慢应变速率拉伸实验研究了一种新型超高强度钢在酸性环境中Cl-和H对应力腐蚀行为的交互作用, 并采用SEM观察了试样断口形貌. 结果表明, Cl-显著提高Cr12Ni4Mo2Co14钢的应力腐蚀敏感性, 实验条件下临界Cl-浓度[Cl-]c为0.15%左右. 当Cl-浓度高于[Cl-]c时, Cl-引发严重的点蚀, 应力腐蚀裂纹起源于点蚀坑处. Cr12Ni4Mo2Co14钢在含Cl-溶液中的断裂机理可以用“滑移-膜破裂”机制进行解释. 充氢后的Cr12Ni4Mo2Co14钢发生氢致开裂, 断口上出现二次裂纹. 临界充氢电流密度i[H]c为10 mA/cm2 (溶液pH=5, 充氢时间为30 min). 当充氢电流密度大于i[H]c时, Cr12Ni4Mo2Co14的强度损失和塑性损失趋于最大值. 溶液中的Cl-浓度和材料中的H有复杂的交互作用, 并非简单的加和作用.

关键词 超高强度钢,酸性环境,应力腐蚀开裂,H,Cl-    
Abstract

In recent years, the development of aerospace industry puts forward a higher requirement for the high strength, high toughness and good weldability of steel materials. Cr12Ni4Mo2Co14 steel is a new kind of ultrahigh strength steel, which is usually used as structure materials under complex stress/strain conditions. In this work, the stress corrosion cracking behavior of Cr12Ni4Mo2Co14 steel in acid environment was studied by slow-strain rate test (SSRT) and SEM. The results showed that the stress corrosion cracking (SCC) susceptibility of Cr12Ni4Mo2Co14 steel was enhanced by chlorine ions remarkably. The critical value of chlorine ion concentration was about 0.15%, above which, severe SCC occurred induced by chlorine ions, and the SCC cracks started from pits. The SCC mechanism of Cr12Ni4Mo2Co14 steel in acid solution containing chlorine ions can be clarified by “slide-film breaking” model. The hydrogen-charged samples of Cr12Ni4Mo2Co14 steel were sensitive to hydrogen induced cracking, and second cracks occurred on the fracture surface. The critical value of hydrogen-charged current density is 10 mA/cm2 for 30 min in solutions with pH=5, above which, the losses of strength and plasticity of Cr12Ni4Mo2Co14 steel reached to the maximum. The effects of chlorine ions and hydrogen had a complex interaction which cannot be added up directly.

Key wordsultrahigh    strength    steel,    acid    environment,    stress    corrosion    cracking(SCC),    H,    Cl-
收稿日期: 2016-01-26     
基金资助:* 国家自然科学基金资助项目51501041
图1  Cl-浓度对Cr12Ni4Mo2Co14钢应力-应变曲线的影响
图2  超高强度钢Cr12Ni4Mo2Co14在含Cl-溶液中断口形貌的SEM像
图3  充氢电流密度对Cr12Ni4Mo2Co14钢应力-应变曲线的影响
图4  Cr12Ni4Mo2Co14钢在不同充氢条件下断口形貌的SEM像
图5  Cl-和H对Cr12Ni4Mo2Co14钢应力-应变曲线及断口形貌的交互影响
图6  [Cl-]对Cr12Ni4Mo2Co14钢应力腐蚀性能的影响
图7  Cr12Ni4Mo2Co14钢在含Cl-的酸性溶液中钝化膜破裂导致裂纹扩展的过程
图8  iH对Cr12Ni4Mo2Co14钢应力腐蚀性能的影响
图9  Cl-和H对Cr12Ni4Mo2Co14钢的强度损失的交互影响
[1] Malakondaian G, Srinivas M, Rama R P.Prog Mater Sci, 1997; 42: 209
[2] Hu Y B, Dong C F, Sun M, Xiao K, Zhong P, Li X G.Corros Sci, 2011; 53: 4159
[3] Sundarama P A, Marble D K,J Alloys Compd, 2003; 360: 90
[4] Ramadan S, Gaillet L, Tessier C, Idrissi H.Appl Surf Sci, 2008; 254: 2255
[5] Eliaz N, Shachar A, Tal B, Eliezer D.Eng Fail Anal, 2002; 9: 167
[6] Yang W, Ni R C, Hua H Z, Pourbaix A.Corro Sci, 1984; 24: 691
[7] Zhong J Y, Sun M, Liu D B, Li X G, Liu T Q.Int J Miner Metall Mater, 2010; 17: 282
[8] Liao Q C, Sun F Y, Lan F L,Acta Metall Sin, 1979; 15: 259
[8] (廖乾初, 孙福玉, 蓝芬兰. 金属学报, 1979; 15: 259)
[9] Nagao A, Smith C D, Dadfarnia M, Sofronis P, Robertson I M.Procedia Mater Sci, 2014; 3: 1700
[10] Shi X B, Yan W, Wang W, Zhao L Y, Shan Y Y, Yang K.J Iron Steel Res Int, 2015; 22: 937
[11] Zhang Y, Chu W Y, Yuan R Z, Wang Y B, Ouyang S X, Xiao J M.Acta Metall Sin, 1995; 31: 406
[11] (张跃, 褚武扬, 袁润章, 王燕斌, 欧阳世翕, 肖纪美. 金属学报, 1995; 31: 406)
[12] Rajabipour A, Melchers R E.Int J Hydrogen Energy, 2015; 40: 9388
[13] Xie Y, Zhang J S.J Nucl Mater, 2015; 466: 85
[14] Panda B, Sujata M, Madan M, Bhaumik S K.Eng Fail Anal, 2014; 36: 379
[15] Lin B J.Acta Metall Sin, 1982; 18: 350(林保军. 金属学报, 1982; 18: 350)
[16] Ye D, Li S H, Li J, Jiang W, Su J, Zhao K Y.Mater Charact, 2015; 109: 100
[17] Li M, Wang L, Almer J D.Acta Mater, 2014; 76: 381
[18] Zhang G M, Zhou Z J, Mo K, Miao Y B, Liu X, Almer J, Stubbins J F.J Nucl Mater, 2015; 467: 50
[19] Djukic M B, Zeravcic V S, Bakic G M, Sedmak A, Rajicic B.Eng Fail Anal, 2015; 58: 485
[20] Weber S, Martin M, Theisen W.Mater Sci Eng, 2011; A528: 7688
[21] Martin M, Weber S, Izawa C, Wagner S, Pundt A, Theisen W.Int J Hydrogen Energy, 2011; 36: 11195
[22] Qiao L J, Zeng Y M, Chu W Y.J Chin Soc Corros Prot, 1998; 18: 233
[22] (乔利杰, 曾一民, 褚武扬. 中国腐蚀与防护学报, 1998; 18: 233)
[1] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[4] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[5] 卢毓华, 王海舟, 李冬玲, 付锐, 李福林, 石慧. 基于高通量场发射扫描电镜建立的高温合金 γ' 相定量统计表征方法[J]. 金属学报, 2023, 59(7): 841-854.
[6] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[7] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[8] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[9] 张伟东, 崔宇, 刘莉, 王文泉, 刘叡, 李蕊, 王福会. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为[J]. 金属学报, 2023, 59(11): 1475-1486.
[10] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[12] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[13] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[14] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[15] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.