Please wait a minute...
金属学报  2023, Vol. 59 Issue (7): 841-854    DOI: 10.11900/0412.1961.2021.00376
  研究论文 本期目录 | 过刊浏览 |
基于高通量场发射扫描电镜建立的高温合金 γ' 相定量统计表征方法
卢毓华1,2, 王海舟1,2(), 李冬玲1,2, 付锐3, 李福林3, 石慧1,2
1钢铁研究总院 北京材料基因工程高精尖创新中心 北京 100081
2钢研纳克检测技术股份有限公司 金属材料表征北京市重点实验室 北京 100081
3钢铁研究总院 高温材料研究所 北京 100081
A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope
LU Yuhua1,2, WANG Haizhou1,2(), LI Dongling1,2, FU Rui3, LI Fulin3, SHI Hui1,2
1Beijing Advanced Innovation Center for Materials Genome Engineering, Central Iron and Steel Research Institute, Beijing 100081, China
2Beijing Key Laboratory of Metal Materials Characterization, NCS Testing Technology Co., Ltd., Beijing 100081, China
3High Temperature Material Research Institute, Center Iron and Steel Research Institute, Beijing 100081, China
引用本文:

卢毓华, 王海舟, 李冬玲, 付锐, 李福林, 石慧. 基于高通量场发射扫描电镜建立的高温合金 γ' 相定量统计表征方法[J]. 金属学报, 2023, 59(7): 841-854.
Yuhua LU, Haizhou WANG, Dongling LI, Rui FU, Fulin LI, Hui SHI. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. Acta Metall Sin, 2023, 59(7): 841-854.

全文: PDF(5219 KB)   HTML
摘要: 

以5种不同固溶冷却速率制备的新型变形GH4096高温合金作为研究对象,基于高通量场发射扫描电镜(SEM)的高速采集和原位可视化的优点,研究合金中的一次、二次和三次γ'相定量表征分析方法。研究过程包括,利用MIPAR软件建立了分割和识别流程,实现合金中一次、二次和三次γ'相的准确识别。通过57000倍和3000倍SEM像中一次γ'相面积分数比值、二次和三次γ'相数量比值、二次和三次γ'相面积分数等随图像张数的变化,得到了能获取γ'相定量统计数据的最小视场:13 × 13张2048 × 2048像素尺寸的57000倍图像的表征区域。通过建立方法获取到γ'相定量数据,且数据趋势与标准化的小角X射线散射(SAXS)法结果一致。结合冷却速率的快慢对本方法获取的γ'相定量数据以及图像形貌进行讨论,实验结果与经典的形核和长大机制及Ostwald Ripening机制的理论结果相符。不同冷却速率样品的400℃拉伸强度不同,但与γ'相定量结果存在相关性:强度高的样品,冷速相对较快,二次γ'相数量较多,γ'相面积分数总和也较高。本工作得到的GH4096高温合金的γ'相定量统计结果对于探讨GH4096高温合金的工艺优化和性能预测具有参考意义。

关键词 GH4096高温合金纳米级颗粒γ'高通量场发射扫描电镜图像分析表征区域    
Abstract

Superalloys are used widely in national defense, energy, maritime, aviation, and other vital areas requiring stable and reliable materials owing to their excellent oxidation and heat corrosion resistance, high-temperature strength, good fatigue performance, and fracture toughness. The presence of a coherent gamma prime (γ') precipitate is the main factor affecting the high-temperature mechanical properties. Therefore, obtaining the quantitative and statistical γ' precipitate data is indispensable for examining and developing new superalloys. On the other hand, conventional instruments and methods barely achieve this goal. In this study, high-throughput field emission scanning electron microscope (high-throughput SEM) was introduced because of its high-speed imaging and original position visualization. Based on the high-throughput SEM, an innovative deformation GH4096 superalloy prepared at five different solution cooling rates were used as an object to establish a quantitative and statistical method for characterizing the primary, secondary, and tertiary γ' precipitates. Many images of γ' precipitates with magnifications of ×57000 and ×3000 were obtained rapidly, and methodologies for recognizing the γ' precipitates were developed using MIPAR software. Matrices of images of different amounts were formed. Through these methodologies, information on these matrices was obtained, including the ratio of the primary γ' precipitates area fractions between images with magnifications of ×57000 and ×3000. The ratio between the amounts of secondary and tertiary γ' precipitates and the area fraction of the secondary and tertiary γ' precipitates varied with the number of images investigated, respectively. By comparing the tendencies of these three results, the minimum field of view that could represent the actual distribution of γ' precipitates was set to a matrix of 13 × 13 images with a magnification of ×57000 and a pixels square of 2048 × 2048. Considering the consistency between the results of the standardized small-angle X-ray scattering (SAXS) and γ' precipitates in the 13 × 13 images, the established method was quantitative in characterizing the primary, secondary, and tertiary γ' precipitates of GH4096 superalloy. The results of the samples with five different solution cooling rates showed that the solution cooling rates strongly influenced the morphology and quantitative results of the γ' precipitates. Moreover, the behavior of the precipitates corresponded to the classical nucleation growth mechanism and Ostwald Ripening. The solution cooling rates influenced the tensile strength of the samples. The samples exhibited excellent tensile strengths at relatively faster cooling rates, more secondary γ' precipitates, and a higher total area fraction of secondary and tertiary γ' precipitates. Overall, a GH4096 superalloy was prepared using the established method. The statistical and quantitative results of the γ' precipitates highlight a novel way of studying the impact of the solution cooling process on γ' precipitates that can predict the performance of GH4096 superalloys.

Key wordsGH4096 superalloy    nanoparticle    γ' precipitate    high-throughput field emission SEM    image analysis    characterization region
收稿日期: 2021-09-07     
ZTFLH:  TG146.1  
基金资助:国家重点研发计划项目(2016YFB0701401)
通讯作者: 王海舟,wanghaizhou@ncschina.com,主要从事冶金分析表征方法和评价研究
Corresponding author: WANG Haizhou, professor, Tel: (010)62181950, E-mail: wanghaizhou@ncschina.com
作者简介: 卢毓华,男,1992年生,博士生
图1  对3000倍SEM像中一次γ'相建立识别Recipe-1的主要步骤
图2  CR-1样品SEM像和采用Recipe-1识别一次γ'相后的伪彩色图像
SampleNumber of SEM imageAverage area fraction
12345
CR-112.225611.402211.949611.004012.814011.8791
CR-211.477811.967112.097311.895711.835111.8546
CR-314.406514.487512.148012.823413.178913.4089
CR-414.417114.425415.686113.945812.940414.2830
CR-511.503411.163912.399512.715011.916011.9396
表1  CR-1~CR-5 5个样品5张3000倍伪彩色图像中一次γ'相的统计面积分数 (%)
图3  对57000倍SEM像中一次、二次和三次γ'相建立识别Recipe-2的几个主要步骤
图4  CR-1~CR-5 5个样品57000倍SEM像以及采用Recipe-2识别后的伪彩色像
图5  CR-1样品484张57000倍SEM像的拼接图(拼接矩阵22 × 22)
SampleMS
1 × 14 × 47 × 710 × 1013 × 1316 × 1619 × 1922 × 22
CR-1(A)34.118214.104113.290513.298013.885613.404713.332113.3222
CR-1(B)09.957010.828210.677210.003711.275811.112212.0587
CR-1(C)18.26617.807417.865316.172914.507813.482112.986212.3973
CR-212.595115.323615.808615.532213.840713.242312.411512.5834
CR-319.193819.596017.800516.128615.920114.457814.291313.9391
CR-41.035521.384016.687015.537714.799313.999913.948914.4741
CR-509.512714.152414.742213.943413.948113.754913.8762
表2  CR-1~CR-5样品不同张数57000倍伪彩色图像中一次γ'相的统计面积分数 (%)
图6  各个样品57000倍和3000倍图像中一次γ'相面积分数之比随图像张数的变化
图7  CR-1~CR-5样品57000倍图像中二次和三次γ'相数量随图像张数的变化
图8  各样品57000倍图像中二次和三次γ'相的数量之比随图像张数的变化
SampleMS
1 × 14 × 47 × 710 × 1013 × 1316 × 1619 × 1922 × 22
CR-1(A)21.677235.795236.660236.636736.340936.345236.327636.1951
CR-1(B)29.449031.690332.494033.015233.031132.460532.338431.6845
CR-1(C)18.777930.154227.008627.653428.427929.023729.338129.4686
CR-228.798328.587828.951829.054429.571629.734529.957829.8297
CR-331.286136.754637.450738.325038.041438.601238.617038.4221
CR-425.659121.517923.823724.358724.805225.212725.257925.1590
CR-540.003637.328735.686534.694134.734934.441333.988133.3435
表3  CR-1~CR-5样品不同张数57000倍伪彩色图像中二次γ'相的统计面积分数 (%)
SampleMS
1 × 14 × 47 × 710 × 1013 × 1316 × 1619 × 1922 × 22
CR-1(A)4.36294.14753.96403.89274.06024.09864.10694.1726
CR-1(B)4.13794.15964.18184.11524.14624.13764.15584.1437
CR-1(C)3.42903.48593.78423.96013.93003.91893.88403.8672
CR-23.77883.59753.72663.68853.72773.73153.73123.7543
CR-35.98715.56495.34245.27845.28475.11105.08295.0549
CR-45.35145.95515.81625.70085.65565.63935.59325.5939
CR-58.55529.39759.21199.20899.24629.33679.41909.4513
表4  CR-1~CR-5样品不同张数57000倍伪彩色图像中三次γ'相的统计面积分数 (%)
图9  样品CR-4中的二次和三次γ'相SEM像及其识别效果
图10  Recipe-2和Recipe-2 +人工修正2种方式对CR-4样品169张57000倍图像中二次和三次γ'相的数量、平均尺寸、尺寸中位值的统计结果对比
图11  物理化学相分析和小角X射线散射(SAXS)法获得的γ'相质量分数以及本工作方法获得的γ'相面积分数的结果比较
图12  5个样品400℃拉伸的力学性能
1 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
2 Chen M S, Wang G Q, Li H B, et al. Annealing treatment methods and mechanisms for refining mixed and coarse grains in a solution treatment nickel-based superalloy [J]. Adv. Eng. Mater., 2019, 21: 1900558
doi: 10.1002/adem.v21.9
3 Guo J T. The current situation of application and development of superalloys in the fields of energy industry [J]. Acta Metall. Sin., 2010, 46: 513
doi: 10.3724/SP.J.1037.2009.00860
3 郭建亭. 高温合金在能源工业领域中的应用现状与发展 [J]. 金属学报, 2010, 46: 513
doi: 10.3724/SP.J.1037.2009.00860
4 Zhang R, Liu P, Cui C Y, et al. Present research situation and prospect of hot working of cast & wrought superalloys for aero-engine turbine disk in China [J]. Acta Metall. Sin., 2021, 57: 1215
doi: 10.11900/0412.1961.2021.00153
4 张 瑞, 刘 鹏, 崔传勇 等. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望 [J]. 金属学报, 2021, 57: 1215
5 Polkowska A, Polkowski W, Warmuzek M, et al. Microstructure and hardness evolution in Haynes 282 nickel-based superalloy during multi-variant aging heat treatment [J]. J. Mater. Eng. Perform., 2019, 28: 3844
doi: 10.1007/s11665-019-3886-0
6 Huang Q Y, Li H K. Superalloys [M]. Beijing: Metallurgical Industry Press, 2000: 24
6 黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 24
7 Wu H Y, Huang Z W, Zhou N, et al. A study of solution cooling rate on γ′ precipitate and hardness of a polycrystalline Ni-based superalloy using a high-throughput methodology [J]. Mater. Sci. Eng., 2019, A739: 473
8 Mao J, Chang K M, Yang W H, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI [J]. Metall. Mater. Trans., 2001, 32A: 2441
9 Lin D L, Yao D L, Lin X J, et al. Effect of volume fraction and size of fine γ′ on creep strength of a DS nickel-base superalloy [J]. Acta Metall. Sin., 1982, 18: 104
9 林栋梁, 姚德良, 林先进 等. 细小γ′粒子的数量和尺寸对提高定向凝固高强度镍基高温合金蠕变强度的作用 [J]. 金属学报, 1982, 18: 104
10 Jiang H F. Requirements and forecast of turbine disk materials [J]. Gas Turb. Exp. Res., 2002, 15(4): 1
10 江和甫. 对涡轮盘材料的需求及展望 [J]. 燃气涡轮试验与研究, 2002, 15(4): 1
11 Zhang Y W, Chi Y. Recent developments of powder metallurgy superalloy in Russia [J]. Powder Metall. Ind., 2012, 22(5): 37
11 张义文, 迟 悦. 俄罗斯粉末冶金高温合金研制新进展 [J]. 粉末冶金工业, 2012, 22(5): 37
12 Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.01281
12 师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.00309
13 Chen Y Q, Prasath babu R, Slater T J A, et al. An investigation of diffusion-mediated cyclic coarsening and reversal coarsening in an advanced Ni-based superalloy [J]. Acta Mater., 2016, 110: 295
doi: 10.1016/j.actamat.2016.02.067
14 Singh A R P, Nag S, Hwang J Y, et al. Influence of cooling rate on the development of multiple generations of γ′ precipitates in a commercial nickel base superalloy [J]. Mater. Charact., 2011, 62: 878
doi: 10.1016/j.matchar.2011.06.002
15 Baldan A. Review progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories [J]. J. Mater. Sci., 2002, 37: 2171
doi: 10.1023/A:1015388912729
16 Dwarapureddy A K, Balikci E, Ibekwe S, et al. Activation energy for growth in single size distribution and the dissolution features of γ′ precipitates in the superalloy IN738LC [J]. J. Mater. Sci., 2008, 43: 1802
doi: 10.1007/s10853-007-2342-y
17 Hwang J Y, Banerjee R, Tiley J, et al. Nanoscale characterization of elemental partitioning between gamma and gamma prime phases in René 88 DT nickel-base superalloy [J]. Metall. Mater. Trans., 2009, 40A: 24
18 Hwang J Y, Nag S, Singh A R P, et al. Compositional variations between different generations of γ′ precipitates forming during continuous cooling of a commercial nickel-base superalloy [J]. Metall. Mater. Trans., 2009, 40A: 3059
19 Chen Y Q, Francis E, Robson J, et al. Compositional variations for small-scale gamma prime (γ′) precipitates formed at different cooling rates in an advanced Ni-based superalloy [J]. Acta Mater., 2015, 85: 199
doi: 10.1016/j.actamat.2014.11.009
20 Mao J, Chang K M, Yang W H, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy Rene88DT [J]. Mater. Sci. Eng., 2002, A332: 318
21 Sharghi-Moshtaghin R, Asgari S. The influence of thermal exposure on the γ' precipitates characteristics and tensile behavior of superalloy IN-738LC [J]. J. Mater. Process. Technol., 2004, 147: 343
doi: 10.1016/j.jmatprotec.2004.01.006
22 Wang H Z, Wang H, Ding H, et al. Progress in high-throughput materials synthesis and characterization [J]. Sci. Technol. Rev., 2015, 33(10): 31
22 王海舟, 汪 洪, 丁 洪 等. 材料的高通量制备与表征技术 [J]. 科技导报, 2015, 33(10): 31
23 Wang H Z, Zhao L, Jia Y H, et al. State-of-the-art review of high-throughput statistical spatial-mapping characterization technology and its application [J]. Engineering, 2020, 6: 621
doi: 10.1016/j.eng.2020.05.005
24 Picó Y, Andreu V. Nanosensors and other techniques for detecting nanoparticles in the environment [A]. Nanosensors for Chemical and Biological Applications: Sensing with Nanotubes, Nanowires and Nanoparticles [M]. Amsterdam: Woodhead Publishing, 2014: 295
25 Yokoyama T, Masuda H, Suzuki M, et al. Basic properties and measuring methods of nanoparticles [A]. Nanoparticle Technology Handbook [M]. 2nd Ed., Amsterdam: Elsevier, 2012: 3
26 Smith T M, Bonacuse P, Sosa J, et al. A quantifiable and automated volume fraction characterization technique for secondary and tertiary γ' precipitates in Ni-based superalloys [J]. Mater. Charact., 2018, 140: 86
doi: 10.1016/j.matchar.2018.03.051
27 Chen N, Guo J J, Gong H F. The research progress of methods for characterizing nanoparticles [J]. Mod. Sci. Instrum., 2012, (2): 160
27 陈 宁, 果晶晶, 宫惠峰. 纳米颗粒粒度测量方法进展 [J]. 现代科学仪器, 2012, (2): 160
28 Smith T M, Senanayake N M, Sudbrack C K, et al. Characterization of nanoscale precipitates in superalloy 718 using high resolution SEM imaging [J]. Mater. Charact., 2019, 148: 178
doi: 10.1016/j.matchar.2018.12.018
29 Cao B, Chen M, Zhou Q. Comparison of three methods of measuring nano-particles size [J]. Phys. Examinat. Test., 2005, 23(6): 27
29 曹 标, 陈 明, 周 崎. 三种纳米颗粒粒径测量方法的比较 [J]. 物理测试, 2005, 23(6): 27
30 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Nanometer powder—Determinaiton of particle size distribution—Small angle X-ray [S]. Beijing: Standards Press of China, 2005
30 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纳米粉末粒度分布的测定X射线小角散射法 [S]. 北京: 中国标准出版社, 2005
31 Goertz V, Dingenouts N, Nirschl H. Comparison of nanometric particle size distributions as determined by SAXS, TEM and analytical ultracentrifuge [J]. Part. Part. Syst. Charact., 2009, 26: 17
doi: 10.1002/ppsc.200800002
32 Xiang Y W, Zhang J Y, Liu C L. Verification for particle size distribution of ultrafine powders by the SAXS method [J]. Mater. Charact., 2000, 44: 435
doi: 10.1016/S1044-5803(00)00061-9
33 Liu Q B, Lu C F, Yan P. Physicochemical phase analysis of a directionally solidified Ni-based cast superalloy [J]. Metall. Anal., 2006, 26(2): 9
33 刘庆斌, 卢翠芬, 燕 平. 一种定向凝固镍基铸造高温合金的物理化学相分析 [J]. 冶金分析, 2006, 26(2): 9
34 Li L X, Zhao X L, Li N, et al. Physicochemical phase analysis of iron-nickel based high temperature alloy with high chromium [J]. Metall. Anal., 2015, 35(2): 6
34 李玲霞, 赵晓丽, 李 南 等. 一种高铬的铁镍基高温合金物理化学相分析 [J]. 冶金分析, 2015, 35(2): 6
35 Ju Y W, Li S, Yuan X F, et al. A macro-nano-atomic-scale high-throughput approach for material research [J]. Sci. Adv., 2021, 7: eabj8804
doi: 10.1126/sciadv.abj8804
36 Sosa J M, Huber D E, Welk B, et al. Development and application of MIPAR™: A novel software package for two- and three-dimensional microstructural characterization [J]. Integr. Mater. Manuf. Innov., 2014, 3: 123
doi: 10.1186/2193-9772-3-10
37 Fu R, Feng D, Chen X C, et al. Research of ESR-CDS technology [J]. J. Iron Steel Res., 2011, 23(suppl.2) : 1
37 付 锐, 冯 涤, 陈希春 等. 电渣重熔连续定向凝固技术研究 [J]. 钢铁研究学报, 2011, 23(): 1
38 Fu R, Chen X C, Ren H, et al. Structure and hot deformation behavior of ESR-CDS René88DT [J]. J. Aeronaut. Mater., 2011, 31(3): 8
38 付 锐, 陈希春, 任 昊 等. 电渣重熔连续定向凝固René88DT合金的组织与热变形行为 [J]. 航空材料学报, 2011, 31(3): 8
39 Chen X C, Fu R, Feng D, et al. Calculation on technological parameters of electroslag remelting continuous-directionally solidified René88DT nickel alloy ingot [J]. Spec. Steel, 2011, 32(5): 31
39 陈希春, 付 锐, 冯 涤 等. 电渣重熔连续定向凝固René88DT镍基合金锭工艺参数的计算 [J]. 特殊钢, 2011, 32(5): 31
40 Chen X C, Ren H, Fu R, et al. Recent development of solidified structure controlling of superalloy during ESR process [J]. Spec. Steel Technol., 2011, 17(3): 1
40 陈希春, 任 昊, 付 锐 等. 电渣重熔高温合金凝固组织控制的研究进展 [J]. 特钢技术, 2011, 17(3): 1
41 Li F L, Fu R, Feng D, et al. Hot deformation characteristics of Ni-base wrought superalloy CDS&W FGH96 [J]. Chin. J. Rare Met., 2015, 39: 201
41 李福林, 付 锐, 冯 涤 等. 镍基变形高温合金CDS&W FGH96热变形行为研究 [J]. 稀有金属, 2015, 39: 201
42 Xu Y M, Li Q, Luo X M. Several development priorities of heat treatment technology in our country [J]. Heat Treat. Met., 2017, 42(4): 1
42 徐跃明, 李 俏, 罗新民. 我国热处理技术发展的几个重点 [J]. 金属热处理, 2017, 42(4): 1
43 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Particle size analysis—image analysis methods—part 1: Static image analysis method [S]. Beijing: Standards Press of China, 2008
43 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 粒度分析 图像分析法 第1部分: 静态图像分析法 [S]. 北京: 中国标准出版社, 2008
44 Semiatin S L, Kim S L, Zhang F, et al. An investigation of high-temperature precipitation in powder-metallurgy, gamma/gamma-prime nickel-base superalloys [J]. Metall. Mater. Trans., 2015, 46A: 1715
[1] 张振武 李继康 许文贺 沈沐宇 戚磊一 郑可盈 李伟 魏青松. 搭接工艺对选区激光熔化镍基单晶高温合金DD491晶体取向与微观组织的影响[J]. 金属学报, 0, (): 0-0.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[5] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[6] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[7] 曹姝婷 赵剑 巩桐兆 张少华 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 0, (): 0-0.
[8] 林雪 钱军余 张文泰 王鹏 万国江. 可降解Zn表面金属多酚载药涂层骨生成和抗菌性能[J]. 金属学报, 0, (): 0-0.
[9] 曹姝婷, 张少华, 张健. GH4061合金在高压富氧环境下的燃烧行为[J]. 金属学报, 2023, 59(4): 547-555.
[10] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[11] 李龙健 李仁庚 张家郡 曹兴豪 康慧君 王同敏.

低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响 [J]. 金属学报, 0, (): 0-0.

[12] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[13] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[14] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[15] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.