Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1363-1371    DOI: 10.11900/0412.1961.2015.00661
  本期目录 | 过刊浏览 |
再结晶退火对高硅电工钢冷轧带材组织、有序结构和力学性能的影响*
莫远科,张志豪(),谢建新,潘洪江
北京科技大学新材料技术研究院, 北京 100083
EFFECTS OF RECRYSTALLIZATION ON THE MICROSTRUCTURE, ORDERING AND MECHANICALPROPERTIES OF COLD-ROLLED HIGH SILICON ELECTRICAL STEEL SHEET
Yuanke MO,Zhihao ZHANG(),Jianxin XIE,Hongjiang PAN
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

莫远科,张志豪,谢建新,潘洪江. 再结晶退火对高硅电工钢冷轧带材组织、有序结构和力学性能的影响*[J]. 金属学报, 2016, 52(11): 1363-1371.
Yuanke MO, Zhihao ZHANG, Jianxin XIE, Hongjiang PAN. EFFECTS OF RECRYSTALLIZATION ON THE MICROSTRUCTURE, ORDERING AND MECHANICALPROPERTIES OF COLD-ROLLED HIGH SILICON ELECTRICAL STEEL SHEET[J]. Acta Metall Sin, 2016, 52(11): 1363-1371.

全文: PDF(1605 KB)   HTML
  
摘要: 

采用弯曲实验, 拉伸实验, SEM, TEM和EBSD等手段, 研究了再结晶退火对高硅电工钢冷轧带材组织、有序结构、力学性能和冷轧成形性能的影响. 结果表明, 冷轧试样经800~1200 ℃保温1 h再结晶退火随炉缓冷后, 室温塑性大幅下降, 可弯曲角度均由冷轧试样的150°下降至50°左右, 且二次冷轧出现严重的边裂; 提高再结晶退火后的空冷或油淬温度、冷却速率可显著提高试样的室温塑性, 1000 ℃保温1 h再结晶退火后, 900 ℃油淬试样的可弯曲角度增大至175°左右, 拉伸断后伸长率由随炉缓冷试样的0.2%提高至5.2%, 且二次冷轧基本不出现边裂; 提高再结晶退火后的冷却温度和速率显著提高试样的室温塑性的原因是试样的有序相尺寸明显减小, 例如, 有序相畴尺寸可从600 ℃以下油淬试样的约5 μm分别减小至700 ℃油淬试样的小于50 nm和900 ℃油淬试样的小于25 nm.

关键词 高硅电工钢,冷轧,再结晶退火,有序度,力学性能    
Abstract

High silicon electrical steel (Fe-6.5%Si alloy, mass fraction) has excellent soft magnetic properties. However, the alloy is very brittle at room temperature and quite hard to be fabricated into cold-rolled sheet by conventional rolling process due to the existence of ordered phases. In recent years, high silicon electrical steel sheet has been successfully obtained though rolling process, and many studies have focused on the recrystallization of the alloy sheet in order to optimize the magnetic properties. Furthermore, it is necessary to further investigate the plasticity of recrystallized high silicon electrical steel sheet for improving the subsequent plastic deformation, such as coiling, uncoiling, blanking and secondary cold-rolling. In this study, effects of recrystallization on the microstructure, ordering, mechanical properties and cold-rolling workability of cold-rolled high silicon electrical steel samples were investigated by using SEM, TEM, EBSD, bending test, tensile test and cold-rolling. The results show that when the cold-rolled samples were recrystallized at 800~1200 ℃ for 1 h followed by furnace-cooling, the plasticity of the sample is sharply decreased, which is proved by the decrease of bending angles from about 150° to 50° and the occurrence of serious edge cracks after secondary cold-rolling. The plasticity of the recrystallized sample is significantly improved by increasing both the cooling temperature and cooling rate during the recrystallization. When the cold-rolled samples were recrystallized at 1000 ℃ for 1 h followed by oil-quenching from 900 ℃, the bending angles are increased to about 175°, the average elongation to failure are increased from 0.2% of furnace-cooling sample to 5.2%, and the secondary cold-rolling edge cracks are suppressed effectively. The plasticity improvement can be attributed to the refinement of ordered domain during recrystallization annealing with high cooling temperature and high cooling rate. For instance, the size of ordered domain in the sample by oil-quenching at 600 ℃ or below is about 5 μm, while the sizes in the samples by oil-quenching from 700 ℃ and 900 ℃ are reduced to less than 50 nm and 25 nm, respectively.

Key wordshigh    silicon    electrical    steel,    cold-rolling,    recrystallization    annealing,    ordering,    mechanical    property
收稿日期: 2015-12-29     
基金资助:* 国家重点基础研究发展计划项目2011CB606300和国家高技术研究发展计划项目2012AA03A505资助
图1  弯曲实验示意图
图2  高硅电工钢冷轧试样及其经1000 ℃保温1 h再结晶退火随炉缓冷后试样的弯曲宏观形貌
图3  冷轧试样及其经1000 ℃保温1 h再结晶退火随炉缓冷后的拉伸断口形貌的SEM像
图4  高硅电工钢冷轧试样的位错组态, 以及冷轧试样和1000 ℃保温1 h再结晶退火随炉缓冷试样在[001]晶带轴的SAED花样
图5  冷却条件对高硅电工钢再结晶退火试样弯曲性能的影响
图6  1000 ℃, 1 h再结晶退火后分别随炉缓冷和900℃油淬试样室温拉伸后的宏观形貌及微观组织
图7  1000 ℃, 1 h再结晶退火分别随炉缓冷和900 ℃油淬试样二次冷轧后的宏观形貌
图8  1000 ℃保温1 h再结晶退火后随炉缓冷和900 ℃油淬试样的EBSD像
图9  高硅电工钢冷轧试样1000 ℃保温1 h再结晶退火后不同冷却条件下的有序相畴
[1] Park J T, Szpunar J A.Acta Mater, 2003; 51: 3037
[2] Lee K M, Park S Y, Huh M Y, Kim J S, Engler O. J Magn Magn Mater, 2014; 354: 324
[3] Komatsubara M, Sadahiro K, Kondo O, Takamiya T, Honda A. J Magn Magn Mater#/magtechI#, 2002; 242-245: 212
[4] Oda Y, Kohno M, Honda A.J Magn Magn Mater, 2008; 320: 2430
[5] Ros-Yá?ez T, Houbaert Y, Fischer O, Schneider J.J Mater Process Technol, 2003; 141: 132
[6] Liang Y F, Ye F, Lin J P, Wang Y L, Chen G L.J Alloys Compd, 2010; 491: 268
[7] Fang X S, Liang Y F, Ye F, Lin J P.J Appl Phys, 2012; 111: 94913
[8] Qin J, Yang P, Mao W M, Ye F.J Magn Magn Mater, 2015; 393: 537
[9] Liu H T, Liu Z Y, Sun Y, Gao F, Wang G D.Mater Lett, 2013; 91: 150
[10] Li H Z, Liu H T, Liu Y, Liu Z Y, Cao G M, Luo Z H, Zhang F Q, Chen S L, Lyu L, Wang G D.J Magn Magn Mater, 2014; 370: 6
[11] Li H Z, Liu H T, Liu Z Y, Wang G D.Mater Charact, 2015; 103: 101
[12] Fu H D, Zhang Z H, Pan H J, Mo Y K, Xie J X.Int J Min Met Mater, 2013; 20: 535
[13] Mo Y K, Zhang Z H, Xie J X, Fu H D, Pan H J.Int J Min Met Mater, 2015; 22: 1171
[14] Pan H J, Zhang Z H, Xie J X.J Magn Magn Mater, 2016; 401C: 625
[15] Stojakovic D, Doherty R D, Kalidindi S R, Landgraf F J G.Metall Mater Trans, 2008; 39A: 1738
[16] Wang Y, Xu Y B, Zhang Y X, Fang F, Lu X, Liu H T, Wang G D.J Magn Magn Mater, 2015; 379: 161
[17] Viala B, Degauque J, Fagot M, Baricco M, Ferrara E, Fiorillo F.Mater Sci Eng, 1996; A212: 62
[18] Shin J S, Lee Z H, Lee T D, Lavernia E J.Scr Mater, 2001; 45: 725
[19] Zhang Z H, Wang W P, Fu H D, Xie J X.Mater Sci Eng, 2011; A530: 519
[20] Li H, Liang Y F, He R Q, Lin J P, Ye F.Acta Metall Sin, 2013; 49: 1452
[20] (李慧, 梁永锋, 贺睿琦, 林均品, 叶丰. 金属学报, 2013; 49: 1452)
[21] Mo Y K, Zhang Z H, Pan H J, Xie J X.J Mater Sci Technol, 2016; 32: 477
[22] Raviprasad K, Chattopadhyay K.Acta Metall Mater, 1993; 41: 609
[23] Shin J S, Bae J S, Kim H J, Lee H M, Lee T D, Lavernia E J, Lee Z H.Mater Sci Eng, 2005; A407: 282
[24] Jung H, Kim J. J Magn Magn Mater, 2014; 353: 76
[25] Fu H D, Zhang Z H, Yang Q, Xie J X.Mater Sci Eng, 2011; A528: 1391
[26] Mo Y K, Zhang Z H, Fu H D, Pan H J, Xie J X.Mater Sci Eng, 2014; A594: 111
[27] Li H, Liang Y F, Yang W, Ye F, Lin J P, Xie J X. Mater Sci Eng, 2015; A628: 262
[28] Matsumura S, Tanaka Y, Koga Y, Oki K.Mater Sci Eng, 2001; A312: 284
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.