|
|
GH3535合金中晶界特征对碲致脆性开裂影响的分形分析 |
杨杜1, 白琴1( ), 胡悦1, 张勇1, 李志军2, 蒋力2, 夏爽1, 周邦新1 |
1.上海大学 材料研究所 上海 200072 2.中国科学院上海应用物理研究所 上海 201800 |
|
Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy |
YANG Du1, BAI Qin1( ), HU Yue1, ZHANG Yong1, LI Zhijun2, JIANG Li2, XIA Shuang1, ZHOU Bangxin1 |
1.Institute of Materials, Shanghai University, Shanghai 200072, China 2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China |
引用本文:
杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
Du YANG,
Qin BAI,
Yue HU,
Yong ZHANG,
Zhijun LI,
Li JIANG,
Shuang XIA,
Bangxin ZHOU.
Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. Acta Metall Sin, 2023, 59(2): 248-256.
1 |
Vacik J, Naramoto H, Cervena J, et al. Absorption of molten fluoride salts in glassy carbon, pyrographite and Hastelloy B[J]. J. Nucl. Mater., 2001, 289: 308
doi: 10.1016/S0022-3115(01)00419-6
|
2 |
Rosenthal M W, Briggs R B, Haubenreich P N. Molten-salt reactor program semiannual progress report[R]. Tennessee: Oak Ridge National Lab., 1972: ORNL/TM-4782
|
3 |
Rosenthal M W, Haubenreich P N, Briggs R B. The development status of molten-salt breeder reactors[R]. Tennessee: Oak Ridge National Lab., 1972: ORNL-4812
|
4 |
Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[J]. Acta Mater., 2002, 50: 2331
doi: 10.1016/S1359-6454(02)00064-2
|
5 |
Hu C L, Xia S, Li H, et al. Effect of grain boundary network on the intergranular stress corrosion cracking of 304 stainless steel[J]. Acta Metall. Sin., 2011, 47: 939
|
5 |
胡长亮, 夏 爽, 李 慧 等. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响[J]. 金属学报, 2011, 47: 939
|
6 |
Michiuchi M, Kokawa H, Wang Z J, et al. Twin-induced grain boundary engineering for 316 austenitic stainless steel[J]. Acta Mater., 2006, 54: 5179
doi: 10.1016/j.actamat.2006.06.030
|
7 |
West E A, Was G S. IGSCC of grain boundary engineered 316L and 690 in supercritical water[J]. J. Nucl. Mater., 2009, 392: 264
doi: 10.1016/j.jnucmat.2009.03.008
|
8 |
Saito S, Kikuchi K, Hamaguchi D, et al. Corrosion-erosion test of SS316L grain boundary engineering material (GBEM) in lead bismuth flowing loop[J]. J. Nucl. Mater., 2012, 431: 91
doi: 10.1016/j.jnucmat.2011.11.040
|
9 |
Kobayashi S, Maruyama T, Tsurekawa S, et al. Grain boundary engineering based on fractal analysis for control of segregation-induced intergranular brittle fracture in polycrystalline nickel[J]. Acta Mater., 2012, 60: 6200
doi: 10.1016/j.actamat.2012.07.065
|
10 |
Bechtle S, Kumar M, Somerday B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials[J]. Acta Mater., 2009, 57: 4148
doi: 10.1016/j.actamat.2009.05.012
|
11 |
Fu C T, Wang Y L, Chu X W, et al. Grain boundary engineering for control of tellurium diffusion in GH3535 alloy[J]. J. Nucl. Mater., 2017, 497: 76
doi: 10.1016/j.jnucmat.2017.10.052
|
12 |
Xia S, Li H, Liu T G, et al. Appling grain boundary engineering to Alloy 690 tube for enhancing intergranular corrosion resistance[J]. J. Nucl. Mater., 2011, 416: 303
doi: 10.1016/j.jnucmat.2011.06.017
|
13 |
Mandelbrot B B, Passoja D E, Paullay A J. Fractal character of fracture surfaces of metals[J]. Nature, 1984, 308: 721
doi: 10.1038/308721a0
|
14 |
Xu M J, Xu J J, Lu H, et al. Fractal and probability analysis of creep crack growth behavior in 2.25Cr-1.6W steel incorporating residual stresses[J]. Appl. Surf. Sci., 2015, 359: 73
doi: 10.1016/j.apsusc.2015.10.063
|
15 |
Dlouhý I, Strnadel B. The effect of crack propagation mechanism on the fractal dimension of fracture surfaces in steels[J]. Eng. Fract. Mech., 2008, 75: 726
doi: 10.1016/j.engfracmech.2007.03.038
|
16 |
Su H, Zhang Y G, Yan Z Q. Fractal analysis of microstructures and properties in ferrite—martensite steels[J]. Scr. Metall. Mater., 1991, 25: 651
doi: 10.1016/0956-716X(91)90108-D
|
17 |
Wang S Y, Song S Z. Corrosion morphology diagnosing syste of metallic materials in seawater based on fractal[J]. Acta Metall. Sin., 2004, 40: 94
|
17 |
王守琰, 宋诗哲. 基于分形的金属材料海水腐蚀形貌图像分析诊断系统[J]. 金属学报, 2004, 40: 94
|
18 |
Růžička Š, Haušild P. Fractal aspects of ductile and cleavage fracture surfaces[J]. Eng. Fract. Mech., 2010, 77: 744
doi: 10.1016/j.engfracmech.2009.11.009
|
19 |
Jiang X G, Chu W Y, Hsiao C M. Relationship between J1C and fractal value of fracture surface of ductile materials[J]. Acta Metall. Mater., 1994, 42: 105
doi: 10.1016/0956-7151(94)90052-3
|
20 |
Strnadel B, Byczanski P. Fractal-dimension limit of fracture surface in structural steels[J]. Kovove. Mater., 2001, 39: 93
|
21 |
Strnadel B, Ferfecki P, Židlík P. Statistical characteristics of fracture surfaces in high-strength steel drop weight tear test specimens[J]. Eng. Fract. Mech., 2013, 112-113: 1
doi: 10.1016/j.engfracmech.2013.10.001
|
22 |
Cao M S, Ren Q W. Fractal behavior of concrete crack and its application to damage assessment[J]. Key Eng. Mater., 2006, 312: 325
doi: 10.4028/www.scientific.net/KEM.312.325
|
23 |
Xian Y Q, Liu J H, Zhang C, et al. Fractal characteristics of fracture morphology of steels irradiated with high-energy ions[J]. J. Nucl. Mater., 2015, 461: 171
doi: 10.1016/j.jnucmat.2015.03.022
|
24 |
Pradhan S K, Prithiv T S, Mandal S. Through-thickness microstructural evolution during grain boundary engineering type thermomechanical processing and its implication on sensitization behavior in austenitic stainless steel[J]. Mater. Charact., 2017, 134: 134
doi: 10.1016/j.matchar.2017.10.014
|
25 |
Brandon D G. The structure of high-angle grain boundaries[J]. Acta Metall., 1966, 14: 1479
doi: 10.1016/0001-6160(66)90168-4
|
26 |
Zhou Y, Aust K T, Erb U, et al. Effects of grain boundary structure on carbide precipitation in 304L stainless steel[J]. Scr. Mater., 2001, 45: 49
doi: 10.1016/S1359-6462(01)00990-3
|
27 |
Bennett B W, Pickering H W. Effect of grain boundary structure on sensitization and corrosion of stainless steel[J]. Metall. Mater. Trans., 1987, 18A: 1117
|
28 |
Hu C L, Xia S, Li H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corros. Sci., 2011, 53: 1880
doi: 10.1016/j.corsci.2011.02.005
|
29 |
Zhang Z L, Xia S, Cao W, et al. Effects of grain boundary character on intergranular stress corrosion cracking initiation in 316 stainless steel[J]. Acta Metall. Sin., 2016, 52: 313
doi: 10.11900/0412.1961.2015.00285
|
29 |
张子龙, 夏 爽, 曹 伟 等. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响[J]. 金属学报, 2016, 52: 313
doi: 10.11900/0412.1961.2015.00285
|
30 |
Cheng H W. Study on intergranular cracking behavior of GH3535 caused by Tellurium[D]. Shanghai: Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2015
|
30 |
程宏伟. Te导致GH3535合金晶间开裂行为的研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2015
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|