Please wait a minute...
金属学报  2023, Vol. 59 Issue (2): 248-256    DOI: 10.11900/0412.1961.2021.00584
  研究论文 本期目录 | 过刊浏览 |
GH3535合金中晶界特征对碲致脆性开裂影响的分形分析
杨杜1, 白琴1(), 胡悦1, 张勇1, 李志军2, 蒋力2, 夏爽1, 周邦新1
1.上海大学 材料研究所 上海 200072
2.中国科学院上海应用物理研究所 上海 201800
Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy
YANG Du1, BAI Qin1(), HU Yue1, ZHANG Yong1, LI Zhijun2, JIANG Li2, XIA Shuang1, ZHOU Bangxin1
1.Institute of Materials, Shanghai University, Shanghai 200072, China
2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
引用本文:

杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
Du YANG, Qin BAI, Yue HU, Yong ZHANG, Zhijun LI, Li JIANG, Shuang XIA, Bangxin ZHOU. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. Acta Metall Sin, 2023, 59(2): 248-256.

全文: PDF(3043 KB)   HTML
摘要: 

对GH3535合金进行晶界工程(GBE)处理,将得到的GBE样品与未经GBE处理(Non-GBE)样品在700℃下渗碲500 h,再进行原位三点弯曲实验,比较渗碲后GBE和Non-GBE样品的开裂性能,并对三点弯曲实验前局部区域的不同类型晶界取向成像显微图和三点弯曲实验后原位裂纹的形貌图进行分形分析。随机晶界(RGB)与裂纹的分形维数变化趋势相同,随机晶界的分形维数越小,材料抗开裂性能越好。GBE样品中因大尺寸孪晶晶粒团簇的平均尺寸更大,且分布更加均匀,有利于提高材料的抗开裂性能。

关键词 GH3535合金晶界工程三点弯曲裂纹分形维数    
Abstract

GH3535 alloy has been used as the main structural material of molten salt reactor, which exhibits good high-temperature strength and excellent corrosion resistance to the molten salts. The intergranular cracking of GH3535 was detected after four years of operation of the molten salt reactor experiment, which was attributed to the inward diffusion of fission products Te. Grain boundary engineering (GBE) has been successfully applied to enhance the grain-boundary-related properties of the materials by increasing the frequency of low Σ coincidence site lattice grain boundaries and tailoring the grain boundary network. The in situ three-point bending test was used to assess the cracking properties of Non-GBE and GBE samples following Te infiltration at 700oC for 500 h. Fractal analysis statistics of various types of grain boundaries and cracks following in situ three-point bending tests were used. The result shows that the fractal dimension of cracks is in accord with that of the random grain boundaries (RGBs). The stronger the fracture resistance of materials, the lower the value of the RGB fractal dimension. The GH3535 alloy GBE samples with a bigger average size and more uniformly distributed twin grain clusters will have greater cracking resistance.

Key wordsGH3535 alloy    grain boundary engineering    three-point bending    crack    fractal dimension
收稿日期: 2021-12-27     
ZTFLH:  TG174.1  
基金资助:国家重点研发计划项目(2018YFE0122100);国家自然科学基金项目(51871144)
作者简介: 杨 杜,男,1996年生,硕士生
图1  计盒维数法计算晶界分形维数的示意图
图2  未经晶界工程处理(NS)和经晶界工程处理(GS)样品不同类型晶界的OIM图
SpecimenLength fraction of grain boundary / %d / μmD / μmD / d
Σ3Σ9 + Σ27RGBLow-ΣCSL
NS49.820.7949.1350.8736.9077.312.10
GS63.329.9726.4673.5437.11121.643.28
表1  NS和GS样品的晶界特征分布统计
图3  NS样品观察区域内不同类型晶界的OIM图和对应区域裂纹的SEM像
图4  GS样品观察区域内不同类型晶界的OIM图和对应区域裂纹的SEM像
图5  NS和GS样品观察区域的晶界特征分布直方图
图6  NS和GS样品观察区域内不同类型晶界和裂纹的分形维数直方图
图7  NS样品不同类型晶界的OIM图和对应区域的SEM像
图8  GS样品不同类型晶界的OIM图和对应区域的SEM像
图9  NS和GS样品的晶粒面积分布图
图10  NS和GS样品的GC和NGC观察区域的分形维数直方图
1 Vacik J, Naramoto H, Cervena J, et al. Absorption of molten fluoride salts in glassy carbon, pyrographite and Hastelloy B[J]. J. Nucl. Mater., 2001, 289: 308
doi: 10.1016/S0022-3115(01)00419-6
2 Rosenthal M W, Briggs R B, Haubenreich P N. Molten-salt reactor program semiannual progress report[R]. Tennessee: Oak Ridge National Lab., 1972: ORNL/TM-4782
3 Rosenthal M W, Haubenreich P N, Briggs R B. The development status of molten-salt breeder reactors[R]. Tennessee: Oak Ridge National Lab., 1972: ORNL-4812
4 Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[J]. Acta Mater., 2002, 50: 2331
doi: 10.1016/S1359-6454(02)00064-2
5 Hu C L, Xia S, Li H, et al. Effect of grain boundary network on the intergranular stress corrosion cracking of 304 stainless steel[J]. Acta Metall. Sin., 2011, 47: 939
5 胡长亮, 夏 爽, 李 慧 等. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响[J]. 金属学报, 2011, 47: 939
6 Michiuchi M, Kokawa H, Wang Z J, et al. Twin-induced grain boundary engineering for 316 austenitic stainless steel[J]. Acta Mater., 2006, 54: 5179
doi: 10.1016/j.actamat.2006.06.030
7 West E A, Was G S. IGSCC of grain boundary engineered 316L and 690 in supercritical water[J]. J. Nucl. Mater., 2009, 392: 264
doi: 10.1016/j.jnucmat.2009.03.008
8 Saito S, Kikuchi K, Hamaguchi D, et al. Corrosion-erosion test of SS316L grain boundary engineering material (GBEM) in lead bismuth flowing loop[J]. J. Nucl. Mater., 2012, 431: 91
doi: 10.1016/j.jnucmat.2011.11.040
9 Kobayashi S, Maruyama T, Tsurekawa S, et al. Grain boundary engineering based on fractal analysis for control of segregation-induced intergranular brittle fracture in polycrystalline nickel[J]. Acta Mater., 2012, 60: 6200
doi: 10.1016/j.actamat.2012.07.065
10 Bechtle S, Kumar M, Somerday B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials[J]. Acta Mater., 2009, 57: 4148
doi: 10.1016/j.actamat.2009.05.012
11 Fu C T, Wang Y L, Chu X W, et al. Grain boundary engineering for control of tellurium diffusion in GH3535 alloy[J]. J. Nucl. Mater., 2017, 497: 76
doi: 10.1016/j.jnucmat.2017.10.052
12 Xia S, Li H, Liu T G, et al. Appling grain boundary engineering to Alloy 690 tube for enhancing intergranular corrosion resistance[J]. J. Nucl. Mater., 2011, 416: 303
doi: 10.1016/j.jnucmat.2011.06.017
13 Mandelbrot B B, Passoja D E, Paullay A J. Fractal character of fracture surfaces of metals[J]. Nature, 1984, 308: 721
doi: 10.1038/308721a0
14 Xu M J, Xu J J, Lu H, et al. Fractal and probability analysis of creep crack growth behavior in 2.25Cr-1.6W steel incorporating residual stresses[J]. Appl. Surf. Sci., 2015, 359: 73
doi: 10.1016/j.apsusc.2015.10.063
15 Dlouhý I, Strnadel B. The effect of crack propagation mechanism on the fractal dimension of fracture surfaces in steels[J]. Eng. Fract. Mech., 2008, 75: 726
doi: 10.1016/j.engfracmech.2007.03.038
16 Su H, Zhang Y G, Yan Z Q. Fractal analysis of microstructures and properties in ferrite—martensite steels[J]. Scr. Metall. Mater., 1991, 25: 651
doi: 10.1016/0956-716X(91)90108-D
17 Wang S Y, Song S Z. Corrosion morphology diagnosing syste of metallic materials in seawater based on fractal[J]. Acta Metall. Sin., 2004, 40: 94
17 王守琰, 宋诗哲. 基于分形的金属材料海水腐蚀形貌图像分析诊断系统[J]. 金属学报, 2004, 40: 94
18 Růžička Š, Haušild P. Fractal aspects of ductile and cleavage fracture surfaces[J]. Eng. Fract. Mech., 2010, 77: 744
doi: 10.1016/j.engfracmech.2009.11.009
19 Jiang X G, Chu W Y, Hsiao C M. Relationship between J1C and fractal value of fracture surface of ductile materials[J]. Acta Metall. Mater., 1994, 42: 105
doi: 10.1016/0956-7151(94)90052-3
20 Strnadel B, Byczanski P. Fractal-dimension limit of fracture surface in structural steels[J]. Kovove. Mater., 2001, 39: 93
21 Strnadel B, Ferfecki P, Židlík P. Statistical characteristics of fracture surfaces in high-strength steel drop weight tear test specimens[J]. Eng. Fract. Mech., 2013, 112-113: 1
doi: 10.1016/j.engfracmech.2013.10.001
22 Cao M S, Ren Q W. Fractal behavior of concrete crack and its application to damage assessment[J]. Key Eng. Mater., 2006, 312: 325
doi: 10.4028/www.scientific.net/KEM.312.325
23 Xian Y Q, Liu J H, Zhang C, et al. Fractal characteristics of fracture morphology of steels irradiated with high-energy ions[J]. J. Nucl. Mater., 2015, 461: 171
doi: 10.1016/j.jnucmat.2015.03.022
24 Pradhan S K, Prithiv T S, Mandal S. Through-thickness microstructural evolution during grain boundary engineering type thermomechanical processing and its implication on sensitization behavior in austenitic stainless steel[J]. Mater. Charact., 2017, 134: 134
doi: 10.1016/j.matchar.2017.10.014
25 Brandon D G. The structure of high-angle grain boundaries[J]. Acta Metall., 1966, 14: 1479
doi: 10.1016/0001-6160(66)90168-4
26 Zhou Y, Aust K T, Erb U, et al. Effects of grain boundary structure on carbide precipitation in 304L stainless steel[J]. Scr. Mater., 2001, 45: 49
doi: 10.1016/S1359-6462(01)00990-3
27 Bennett B W, Pickering H W. Effect of grain boundary structure on sensitization and corrosion of stainless steel[J]. Metall. Mater. Trans., 1987, 18A: 1117
28 Hu C L, Xia S, Li H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corros. Sci., 2011, 53: 1880
doi: 10.1016/j.corsci.2011.02.005
29 Zhang Z L, Xia S, Cao W, et al. Effects of grain boundary character on intergranular stress corrosion cracking initiation in 316 stainless steel[J]. Acta Metall. Sin., 2016, 52: 313
doi: 10.11900/0412.1961.2015.00285
29 张子龙, 夏 爽, 曹 伟 等. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响[J]. 金属学报, 2016, 52: 313
doi: 10.11900/0412.1961.2015.00285
30 Cheng H W. Study on intergranular cracking behavior of GH3535 caused by Tellurium[D]. Shanghai: Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2015
30 程宏伟. Te导致GH3535合金晶间开裂行为的研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2015
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[5] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[6] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[7] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[8] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[9] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[10] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[11] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[12] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[13] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[14] 王学, 李勇, 王家庆, 胡磊. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.
[15] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.