Please wait a minute...
金属学报  2022, Vol. 58 Issue (8): 992-1002    DOI: 10.11900/0412.1961.2021.00382
  研究论文 本期目录 | 过刊浏览 |
制备工艺对FGH4097高温合金微观组织与性能的影响
解磊鹏, 孙文瑶(), 陈明辉(), 王金龙, 王福会
东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
Effects of Processing on Microstructures and Properties of FGH4097 Superalloy
XIE Leipeng, SUN Wenyao(), CHEN Minghui(), WANG Jinlong, WANG Fuhui
Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
引用本文:

解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
Leipeng XIE, Wenyao SUN, Minghui CHEN, Jinlong WANG, Fuhui WANG. Effects of Processing on Microstructures and Properties of FGH4097 Superalloy[J]. Acta Metall Sin, 2022, 58(8): 992-1002.

全文: PDF(4301 KB)   HTML
摘要: 

利用SEM、EBSD和TEM等实验技术研究了放电等离子烧结(SPS)和热压(HP)法制备的FGH4097粉末高温合金的微观结构、力学性能和氧化行为。结果表明:SPS态合金具有组织均匀、晶粒细小、碳化物析出少等优点,具有更为优异的拉伸性能和抗高温氧化性能,其室温屈服强度和抗拉强度分别为998和1401 MPa,延伸率达17.1%。而HP态合金的室温屈服强度、抗拉强度和延伸率分别为951 MPa、1262 MPa和14.4%。在700℃下2种合金的屈服强度和抗拉强度相差不大,但SPS态的塑性比HP态提高约80%。2种合金在900℃下氧化100 h的氧化增重均遵循抛物线定律,但HP态的氧化速率约是SPS态的2.6倍,其主要原因是SPS态合金表面生成一层连续致密的Al2O3内膜,而HP态合金表面生成大量的非保护性的NiCr2O4和TiO2,内部也发生了严重的内氧化。

关键词 FGH4097高温合金微观结构力学性能高温氧化    
Abstract

Powder metallurgy (PM) nickel-based superalloys are widely used as high-temperature, fatigue-resistant components in aircraft and gas turbines. However, many powder particle boundaries and carbides are found in alloys prepared via traditional methods, such as hot pressing (HP) and hot isostatic pressing, causing serious damage to the properties of PM superalloys. New methods and processes must be developed to improve the performance of PM superalloys. SEM, EBSD, and TEM were used in this work to investigate the microstructure, mechanical properties, and oxidation behavior of FGH4097 alloys prepared via spark plasma sintering (SPS) and HP. Owing to the advantages of uniform microstructure, fine grain, and less carbide precipitation, SPSed alloy has better tensile properties and oxidation resistance than HPed alloy. At 25oC, SPSed alloy's yield, tensile strengths, and elongation are 998 MPa, 1401 MPa, and 17.1%, respectively; whereas those of HPed alloy are 951 MPa, 1262 MPa, and 14.4%, respectively. Although the two alloys exhibit similar yield and tensile strengths at 700oC, SPSed alloy shows merely 80% higher ductility than HPed alloy. The oxidation mass gain of the two alloys oxidized at 900oC for 100 h follows the parabolic law. A continuous and dense Al2O3 scale is formed on the surface of SPSed alloy, which effectively prevents the inward diffusion of O and outward diffusion of Cr and Ti. The mass gain is merely 0.19 mg/cm2, and the oxidation rate is 1.03 × 10-7 mg2/(cm4·s). Conversely, the oxidation rate of HPed alloy is approximately 2.6 times that of SPSed alloy. Severe internal oxidation occurs in HPed alloy, resulting in abundant less protective NiCr2O4 and TiO2 formation on the surface, as well as large cracks and spalling.

Key wordsFGH4097 superalloy    microstructure    mechanical property    high temperature oxidation
收稿日期: 2021-09-06     
ZTFLH:  TG142.14  
基金资助:国家自然科学基金项目(51871051);工业和信息技术部项目(MJ-2017-J-99)
作者简介: 陈明辉, mhchen@mail.neu.edu.cn,主要从事高温防护涂层与自润滑复合材料研究
解磊鹏,男,1990年生,博士生
图1  FGH4097合金化粉末的微观形貌
图2  HP和SPS方法制备的FGH4097合金的微观组织
图3  HP和SPS方法制备的FGH4097合金的TEM像及选区电子衍射(SAED)花样
RegionCTiNbWMoHfONiCoCrAl
14.331.1111.289.8534.5602.6611.285.0528.051.59
235.4018.7638.570.740.540.7602.810.911.340.16
341.5218.8434.320.5201.3101.910.660.860.06
401.6700.230.6930.1137.5218.516.311.960
500.2400036.0647.769.292.803.970
631.5620.4341.310.100.411.1703.180.551.290
表1  图3中各区域的EDS结果 (atomic fraction / %)
图4  HP和SPS方法制备的FGH4097合金的EBSD像及晶粒尺寸分布
图5  HP和SPS方法制备的FGH4097合金分别在25和700℃条件下的工程应力-应变曲线
图6  HP和SPS方法制备的FGH4097合金在25℃下拉伸后的断裂表面及断口形貌
图7  HP和SPS方法制备的FGH4097合金在900℃下氧化100 h的动力学曲线及氧化速率曲线
图8  HP和SPS方法制备的FGH4097合金在900℃下氧化100 h后的XRD谱
图9  HP和SPS方法制备的FGH4097合金在900℃下氧化100 h后表面及截面的SEM像
SampleσpσdσsTheoretical valueTure value
HPed389144210743951
SPSed448209210867998
表2  各强化机制对HP态和SPS态FGH4097合金屈服强度的贡献 (MPa)
1 Backman D G, Williams J C. Advanced materials for aircraft engine applications [J]. Science, 1992, 255: 1082
pmid: 17817782
2 Reed R C. The Superalloys: Fundamentals and Applications [M]. London: Cambridge University Press, 2008: 33
3 Schafrik R, Sprague R. Superalloy technology: A perspective on critical innovations for turbine engines [J]. Key Eng. Mater., 2008, 380: 113
doi: 10.4028/www.scientific.net/KEM.380.113
4 Fecht H, Furrer D. Processing of nickel-base superalloys for turbine engine disc applications [J]. Adv. Eng. Mater., 2000, 2: 777
doi: 10.1002/1527-2648(200012)2:12<777::AID-ADEM777>3.0.CO;2-R
5 Liu F F, Chen J Y, Dong J X, et al. The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy [J]. Mater. Sci. Eng., 2016, A651: 102
6 Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application [J]. Acta Metall. Sin., 2019, 55: 1133
6 张国庆, 张义文, 郑 亮 等. 航空发动机用粉末高温合金及制备技术研究进展 [J]. 金属学报, 2019, 55: 1133
7 Raisson G. Evolution of PM nickel base superalloy processes and products [J]. Powder Metall., 2008, 51: 10
doi: 10.1179/174329008X286631
8 Qu X H, Zhang G Q, Zhang L, Applications of powder metallurgy technologies in aero-engines [J]. J. Aeronaut. Mater., 2014, 34(1): 1
8 曲选辉, 张国庆, 章 林. 粉末冶金技术在航空发动机中的应用 [J]. 航空材料学报, 2014, 34(1): 1
9 Miner R V, Gayda J. Effects of processing and microstructure on the fatigue behaviour of the nickel-base superalloy René 95 [J]. Int. J. Fatigue, 1984, 6: 189
doi: 10.1016/0142-1123(84)90037-9
10 Radavich J, Furrer D. Assessment of Russian P/M superalloy EP741NP [A]. Superalloys 2004 [C]. Pittsburgh: The Minerals, Metals & Materials Society, 2004: 381
11 Ma W B, Liu G Q, Hu B F, et al. Effect of Hf on carbides of FGH4096 superalloy produced by hot isostatic pressing [J]. Mater. Sci. Eng., 2013, A587: 313
12 Qiu C L, Attallah M M, Wu X H, et al. Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder [J]. Mater. Sci. Eng., 2013, A564: 176
13 Roncery L M, Lopez-Galilea I, Ruttert B, et al. Influence of temperature, pressure, and cooling rate during hot isostatic pressing on the microstructure of an SX Ni-base superalloy [J]. Mater. Des., 2016, 97: 544
doi: 10.1016/j.matdes.2016.02.051
14 Khoshghadam-Pireyousefan M, Mohammadzadeh A, Heidarzadeh A, et al. Fundamentals of spark plasma sintering for metallic, ceramic, and polymer matrix composites production [J]. Encycl. Mater.: Compos., 2021, 2: 822
15 Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments [J]. Adv. Eng. Mater., 2014, 16: 830
doi: 10.1002/adem.201300409
16 Yang W P, Liu G Q, Wu K, et al. Influence of sub-solvus solution heat treatment on γ′ morphological instability in a new Ni-Cr-Co-based powder metallurgy superalloy [J]. J. Alloys Compd., 2014, 582: 515
doi: 10.1016/j.jallcom.2013.07.045
17 Galindo-Nava E I, Connor L D, Rae C M F. On the prediction of the yield stress of unimodal and multimodal γ′ nickel-base superalloys [J]. Acta Mater., 2015, 98: 377
doi: 10.1016/j.actamat.2015.07.048
18 Wang L. Mechanical Properties of Materials [M]. 3rd Ed., Shenyang: Northeast University Press, 2014: 89
18 王 磊. 材料的力学性能 [M]. 第 3版, 东北大学出版社, 2014: 89
19 Thébaud L, Villechaise P, Crozet C, et al. Is there an optimal grain size for creep resistance in Ni-based disk superalloys? [J]. Mater. Sci. Eng., 2018, A716: 274
20 Kozar R W, Suzuki A, Milligan W W, et al. Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys [J]. Metall. Mater. Trans., 2009, 40A: 1588
21 Roth H A, Davis C L, Thomson R C. Modeling solid solution strengthening in nickel alloys [J]. Metall. Mater. Trans., 1997, 28A: 1329
22 Dong X M, Zhang X L, Du K, et al. Microstructure of carbides at grain boundaries in nickel-based superalloys [J]. J. Mater. Sci. Technol., 2012, 28: 1031
doi: 10.1016/S1005-0302(12)60169-8
23 Sundararaman M, Mukhopadhyay P, Banerjee S. Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Pittsburgh: The Minerals, Metals & Materials Society, 1997: 367
24 Sreenu B, Sarkar R, Kumar S S S, et al. Microstructure and mechanical behaviour of an advanced powder metallurgy nickel base superalloy processed through hot isostatic pressing route for aerospace applications [J]. Mater. Sci. Eng., 2020, A797: 140254
25 Pérez P, González-Carrasco J L, Adeva P. Influence of exposure time and grain size on the oxidation behaviour of a PM Ni3Al alloy at 635oC [J]. Corros. Sci., 1998, 40: 631
doi: 10.1016/S0010-938X(97)00166-2
26 Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: A review [J]. Corros. Commun., 2021, 1: 58
doi: 10.1016/j.corcom.2021.06.003
27 Zhao W, Gleeson B. Assessment of the detrimental effects of steam on Al2O3-scale establishment [J]. Oxid. Met., 2015, 83: 607
doi: 10.1007/s11085-015-9541-8
28 Sun W Y, Chen M H, Bao Z B, et al. Breakaway oxidation of a low-Al content nanocrystalline coating at 1000℃ [J]. Surf. Coat. Technol., 2019, 358: 958
doi: 10.1016/j.surfcoat.2018.12.034
29 Yang S S, Yang L L, Chen M H, et al. Understanding of failure mechanisms of the oxide scales formed on nanocrystalline coatings with different Al content during cyclic oxidation [J]. Acta Mater., 2021, 205: 116576
doi: 10.1016/j.actamat.2020.116576
30 Yu H, Ukai S, Hayashi S, et al. Effect of Al content on the high-temperature oxidation of Co-20Cr-(5, 10) Al oxide dispersion strengthened superalloys [J]. Corros. Sci., 2017, 118: 49
doi: 10.1016/j.corsci.2017.01.015
31 Guo C, Yu Z R, Liu C, et al. Effects of Y2O3 nanoparticles on the high-temperature oxidation behavior of IN738LC manufactured by laser powder bed fusion [J]. Corros. Sci., 2020, 171: 108715
doi: 10.1016/j.corsci.2020.108715
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.