Please wait a minute...
金属学报  2023, Vol. 59 Issue (12): 1633-1643    DOI: 10.11900/0412.1961.2022.00177
  本期目录 | 过刊浏览 |
固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响
张开元1,2, 董文超1(), 赵栋3, 李世键3, 陆善平1()
1中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2中国科学技术大学 材料科学与工程学院 沈阳 110016
3沈阳飞机工业(集团)有限公司 沈阳 110034
Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes
ZHANG Kaiyuan1,2, DONG Wenchao1(), ZHAO Dong3, LI Shijian3, LU Shanping1()
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3Shenyang Aircraft Corporation, Shenyang 110034, China
引用本文:

张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
Kaiyuan ZHANG, Wenchao DONG, Dong ZHAO, Shijian LI, Shanping LU. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. Acta Metall Sin, 2023, 59(12): 1633-1643.

全文: PDF(2517 KB)   HTML
摘要: 

建立了Fe-Co-Ni超高强度钢板电子束焊热源模型和“热-冶金-力学”耦合有限元模型,通过焊缝截面形貌和残余应力的模拟结果和实测结果对比,验证了耦合有限元模型的可靠性。利用耦合有限元模型模拟了Fe-Co-Ni超高强度钢长臂梁构件的“电子束焊-真空气淬”过程,预测了在焊接-淬火过程中组织转变规律和应力与变形。研究发现,真空气淬是导致超高强度钢构件产生明显变形的主要原因,考虑固态相变的真空气淬过程模拟结果可以获得准确的变形方向和大小。

关键词 Fe-Co-Ni超高强度钢数值模拟固态相变残余应力    
Abstract

Due to its outstanding all-around performance, Fe-Co-Ni ultra-high strength steel (UHSS) is frequently used in crucial load-bearing components. The UHSS components will be significantly deformed during the welding and post-welding heat treatment operations, which makes the subsequent assembly to satisfy usage requirements a challenge. As a result, it is crucial to simulate the entire manufacturing process of UHSS components to investigate and comprehend the laws of stress and distortion in UHSS component weld joints throughout the manufacturing process. In this study, the “thermo-metallurgical-mechanical” coupled finite element model's accuracy is first verified, followed by the development of a heat source model for electron beam welding. The evolution of the microstructure of the weld joint, stress, and distortion in the weld joint of complex components are thus precisely predicted using the linked model throughout the production process of “electron beam welding-vacuum gas quenching”. The primary cause of the severe deformation of complex components is vacuum gas quenching. The solid-state phase transformation cannot be ignored in the simulation process of “electron beam welding-vacuum gas quenching” of the complicated components.

Key wordsFe-Co-Ni ultra-high strength steel    numerical simulation    solid-state phase transformation    residual stress
收稿日期: 2022-04-17     
ZTFLH:  TG404  
基金资助:黑龙江省自然科学基金项目(TD2021E006);辽宁省重点研发计划项目(2020JH1/10100001)
通讯作者: 董文超,wcdong@imr.ac.cn,主要从事焊接力学的研究;
陆善平,shplu@imr.ac.cn,主要从事焊接材料的研究
作者简介: 张开元,男,1996年生,博士生
图1  电子束焊试板及有限元模型
图2  电子束焊三维倒锥体热源模型及焊缝截面形貌模拟和实验结果对比
图3  电子束焊残余应力分布云图及残余应力XRD方法测试结果与模拟结果对比
图4  Fe-Co-Ni超高强度钢长臂梁有限元模型及力学边界条件
图5  真空气淬工艺及热循环曲线的实验与模拟结果对比
图6  长臂梁表面图4a所示位置P1和P2处的温度、相体积分数与时间关系曲线,及沿L1和L2路径的残余应力分布
图7  长臂梁电子束焊变形云图
图8  淬火时间为179.5和3000 s时长臂梁真空气淬温度分布云图
图9  不考虑固态相变的长臂梁真空气淬变形云图
图10  长臂梁真空气淬组织云图和组织变化曲线
图11  长臂梁真空气淬变形云图及底部支撑位置真空气淬变形的模拟结果与实测结果对比
图12  长臂梁真空气淬冷却过程组织与变形曲线
1 Gao Y H, Liu S Z, Hu X B, et al. A novel low cost 2000  MPa grade ultra-high strength steel with balanced strength and toughness[J]. Mater. Sci. Eng., 2019, A759: 298
2 Kim Y K, Kim K S, Song Y B, et al. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness[J]. J. Mater. Sci. Technol., 2021, 66: 36
doi: 10.1016/j.jmst.2020.06.014
3 Wang C C, Zhang C, Yang Z G, et al. Design standard and analysis of ageing process in high Co-Ni secondary hardening steel[J]. Acta Metall. Sin., 2017, 53: 175
3 王晨充, 张 弛, 杨志刚 等. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53: 175
4 Mondiere A, Déneux V, Binot N, et al. Controlling the MC and M2C carbide precipitation in Ferrium® M54® steel to achieve optimum ultimate tensile strength/fracture toughness balance[J]. Mater. Charact., 2018, 140: 103
doi: 10.1016/j.matchar.2018.03.041
5 Zhang Y P, Zhan D P, Qi X W, et al. Effect of solid-solution temperature on the microstructure and properties of ultra-high-strength ferrium S53® steel[J]. Mater. Sci. Eng., 2018, A730: 41
6 Zhang Y P, Zhan D P, Qi X W, et al. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel[J]. Mater. Charact., 2018, 144: 393
doi: 10.1016/j.matchar.2018.07.038
7 Liu Y, Qin S W, Zhang J Z, et al. Influence of transformation plasticity on the distribution of internal stress in three water-quenched cylinders[J]. Metall. Mater. Trans., 2017, 48A: 4943
8 Ahn J, He E, Chen L, et al. Determination of residual stresses in fibre laser welded AA2024-T3 T-joints by numerical simulation and neutron diffraction[J]. Mater. Sci. Eng., 2018, A712: 685
9 Lin J, Ma N S, Liu X, et al. Modification of residual stress distribution in welded joint of titanium alloy with multi electron beam heating[J]. J. Mater. Process. Technol., 2020, 278: 116504
doi: 10.1016/j.jmatprotec.2019.116504
10 Zhang C H, Li S, Sun J M, et al. Controlling angular distortion in high strength low alloy steel thick-plate T-joints[J]. J. Mater. Process. Technol., 2019, 267: 257
doi: 10.1016/j.jmatprotec.2018.12.023
11 Hamelin C J, Muránsky O, Smith M C, et al. Validation of a numerical model used to predict phase distribution and residual stress in ferritic steel weldments[J]. Acta Mater., 2014, 75: 1
doi: 10.1016/j.actamat.2014.04.045
12 Tan P F, Shen F, Li B, et al. A thermo-metallurgical-mechanical model for selective laser melting of Ti6Al4V[J]. Mater. Des., 2019, 168: 107642
doi: 10.1016/j.matdes.2019.107642
13 Lee S J, Lee Y K. Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics[J]. Acta Mater., 2008, 56: 1482
doi: 10.1016/j.actamat.2007.11.039
14 Tian Y, Tan Z L, Li H J, et al. A new finite element model for Mn-Si-Cr bainitic/martensitic product quenching process: Simulation and experimental validation[J]. J. Mater. Process. Technol., 2021, 294: 117137
doi: 10.1016/j.jmatprotec.2021.117137
15 Jung M, Kang M, Lee Y K. Finite-element simulation of quenching incorporating improved transformation kinetics in a plain medium-carbon steel[J]. Acta Mater., 2012, 60: 525
doi: 10.1016/j.actamat.2011.10.007
16 Ning J, Zhang L J, Yang J N, et al. Characteristics of multi-pass narrow-gap laser welding of D406A ultra-high strength steel[J]. J. Mater. Process. Technol., 2019, 270: 168
doi: 10.1016/j.jmatprotec.2019.02.026
17 Yaghi A H, Hyde T H, Becker A A, et al. Comparison of measured and modelled residual stresses in a welded P91 steel pipe undergoing post weld heat treatment[J]. Int. J. Press. Vessels Pip., 2020, 181: 104076
doi: 10.1016/j.ijpvp.2020.104076
18 Uzun F, Korsunsky A M. On the analysis of post weld heat treatment residual stress relaxation in Inconel alloy 740H by combining the principles of artificial intelligence with the eigenstrain theory[J]. Mater. Sci. Eng., 2019, A752: 180
19 Zhang H, Men Z X, Li J K, et al. Numerical simulation of the electron beam welding and post welding heat treatment coupling process[J]. High Temp. Mater. Process., 2018, 37: 793
doi: 10.1515/htmp-2017-0053
20 Alberg H, Berglund D. Comparison of plastic, viscoplastic, and creep models when modelling welding and stress relief heat treatment[J]. Comput. Methods Appl. Mech. Eng., 2003, 192: 5189
doi: 10.1016/j.cma.2003.07.010
21 Berglund D, Alberg H, Runnemalm H. Simulation of welding and stress relief heat treatment of an aero engine component[J]. Finite Elem. Anal. Des., 2003, 39: 865
doi: 10.1016/S0168-874X(02)00136-1
22 Leblond J B, Devaux J. A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size[J]. Acta Metall., 1984, 32: 137
doi: 10.1016/0001-6160(84)90211-6
23 Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metall., 1959, 7: 59
doi: 10.1016/0001-6160(59)90170-1
24 Zhang K Y, Dong W C, Lu S P. Transformation plasticity of AF1410 steel and its influences on the welding residual stress and distortion: Experimental and numerical study[J]. Mater. Sci. Eng., 2021, A821: 141628
25 Zhang K Y, Dong W C, Lu S P. Experimental and numerical investigation of stress and distortion in AF1410 steel under varying quenching conditions[J]. J. Mater. Eng. Perform., 2022, 31: 6858
doi: 10.1007/s11665-022-06688-6
26 Bardel D, Nelias D, Robin V, et al. Residual stresses induced by electron beam welding in a 6061 aluminium alloy[J]. J. Mater. Process. Technol., 2016, 235: 1
doi: 10.1016/j.jmatprotec.2016.04.013
27 Liu Y, Qin S W, Hao Q G, et al. Finite element simulation and experimental verification of internal stress of quenched AISI 4140 cylinders[J]. Metall. Mater. Trans., 2017, 48A: 1402
28 da Silva A D, Pedrosa T A, Gonzalez-Mendez J L, et al. Distortion in quenching an AISI 4140 C-ring—Predictions and experiments[J]. Mater. Des., 2012, 42: 55
doi: 10.1016/j.matdes.2012.05.031
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[6] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[7] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[8] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[9] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[10] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[11] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[12] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[13] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[14] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[15] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.