|
|
固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响 |
张开元1,2, 董文超1( ), 赵栋3, 李世键3, 陆善平1( ) |
1中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2中国科学技术大学 材料科学与工程学院 沈阳 110016 3沈阳飞机工业(集团)有限公司 沈阳 110034 |
|
Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes |
ZHANG Kaiyuan1,2, DONG Wenchao1( ), ZHAO Dong3, LI Shijian3, LU Shanping1( ) |
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3Shenyang Aircraft Corporation, Shenyang 110034, China |
引用本文:
张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
Kaiyuan ZHANG,
Wenchao DONG,
Dong ZHAO,
Shijian LI,
Shanping LU.
Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. Acta Metall Sin, 2023, 59(12): 1633-1643.
1 |
Gao Y H, Liu S Z, Hu X B, et al. A novel low cost 2000 MPa grade ultra-high strength steel with balanced strength and toughness[J]. Mater. Sci. Eng., 2019, A759: 298
|
2 |
Kim Y K, Kim K S, Song Y B, et al. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness[J]. J. Mater. Sci. Technol., 2021, 66: 36
doi: 10.1016/j.jmst.2020.06.014
|
3 |
Wang C C, Zhang C, Yang Z G, et al. Design standard and analysis of ageing process in high Co-Ni secondary hardening steel[J]. Acta Metall. Sin., 2017, 53: 175
|
3 |
王晨充, 张 弛, 杨志刚 等. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53: 175
|
4 |
Mondiere A, Déneux V, Binot N, et al. Controlling the MC and M2C carbide precipitation in Ferrium® M54® steel to achieve optimum ultimate tensile strength/fracture toughness balance[J]. Mater. Charact., 2018, 140: 103
doi: 10.1016/j.matchar.2018.03.041
|
5 |
Zhang Y P, Zhan D P, Qi X W, et al. Effect of solid-solution temperature on the microstructure and properties of ultra-high-strength ferrium S53® steel[J]. Mater. Sci. Eng., 2018, A730: 41
|
6 |
Zhang Y P, Zhan D P, Qi X W, et al. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel[J]. Mater. Charact., 2018, 144: 393
doi: 10.1016/j.matchar.2018.07.038
|
7 |
Liu Y, Qin S W, Zhang J Z, et al. Influence of transformation plasticity on the distribution of internal stress in three water-quenched cylinders[J]. Metall. Mater. Trans., 2017, 48A: 4943
|
8 |
Ahn J, He E, Chen L, et al. Determination of residual stresses in fibre laser welded AA2024-T3 T-joints by numerical simulation and neutron diffraction[J]. Mater. Sci. Eng., 2018, A712: 685
|
9 |
Lin J, Ma N S, Liu X, et al. Modification of residual stress distribution in welded joint of titanium alloy with multi electron beam heating[J]. J. Mater. Process. Technol., 2020, 278: 116504
doi: 10.1016/j.jmatprotec.2019.116504
|
10 |
Zhang C H, Li S, Sun J M, et al. Controlling angular distortion in high strength low alloy steel thick-plate T-joints[J]. J. Mater. Process. Technol., 2019, 267: 257
doi: 10.1016/j.jmatprotec.2018.12.023
|
11 |
Hamelin C J, Muránsky O, Smith M C, et al. Validation of a numerical model used to predict phase distribution and residual stress in ferritic steel weldments[J]. Acta Mater., 2014, 75: 1
doi: 10.1016/j.actamat.2014.04.045
|
12 |
Tan P F, Shen F, Li B, et al. A thermo-metallurgical-mechanical model for selective laser melting of Ti6Al4V[J]. Mater. Des., 2019, 168: 107642
doi: 10.1016/j.matdes.2019.107642
|
13 |
Lee S J, Lee Y K. Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics[J]. Acta Mater., 2008, 56: 1482
doi: 10.1016/j.actamat.2007.11.039
|
14 |
Tian Y, Tan Z L, Li H J, et al. A new finite element model for Mn-Si-Cr bainitic/martensitic product quenching process: Simulation and experimental validation[J]. J. Mater. Process. Technol., 2021, 294: 117137
doi: 10.1016/j.jmatprotec.2021.117137
|
15 |
Jung M, Kang M, Lee Y K. Finite-element simulation of quenching incorporating improved transformation kinetics in a plain medium-carbon steel[J]. Acta Mater., 2012, 60: 525
doi: 10.1016/j.actamat.2011.10.007
|
16 |
Ning J, Zhang L J, Yang J N, et al. Characteristics of multi-pass narrow-gap laser welding of D406A ultra-high strength steel[J]. J. Mater. Process. Technol., 2019, 270: 168
doi: 10.1016/j.jmatprotec.2019.02.026
|
17 |
Yaghi A H, Hyde T H, Becker A A, et al. Comparison of measured and modelled residual stresses in a welded P91 steel pipe undergoing post weld heat treatment[J]. Int. J. Press. Vessels Pip., 2020, 181: 104076
doi: 10.1016/j.ijpvp.2020.104076
|
18 |
Uzun F, Korsunsky A M. On the analysis of post weld heat treatment residual stress relaxation in Inconel alloy 740H by combining the principles of artificial intelligence with the eigenstrain theory[J]. Mater. Sci. Eng., 2019, A752: 180
|
19 |
Zhang H, Men Z X, Li J K, et al. Numerical simulation of the electron beam welding and post welding heat treatment coupling process[J]. High Temp. Mater. Process., 2018, 37: 793
doi: 10.1515/htmp-2017-0053
|
20 |
Alberg H, Berglund D. Comparison of plastic, viscoplastic, and creep models when modelling welding and stress relief heat treatment[J]. Comput. Methods Appl. Mech. Eng., 2003, 192: 5189
doi: 10.1016/j.cma.2003.07.010
|
21 |
Berglund D, Alberg H, Runnemalm H. Simulation of welding and stress relief heat treatment of an aero engine component[J]. Finite Elem. Anal. Des., 2003, 39: 865
doi: 10.1016/S0168-874X(02)00136-1
|
22 |
Leblond J B, Devaux J. A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size[J]. Acta Metall., 1984, 32: 137
doi: 10.1016/0001-6160(84)90211-6
|
23 |
Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metall., 1959, 7: 59
doi: 10.1016/0001-6160(59)90170-1
|
24 |
Zhang K Y, Dong W C, Lu S P. Transformation plasticity of AF1410 steel and its influences on the welding residual stress and distortion: Experimental and numerical study[J]. Mater. Sci. Eng., 2021, A821: 141628
|
25 |
Zhang K Y, Dong W C, Lu S P. Experimental and numerical investigation of stress and distortion in AF1410 steel under varying quenching conditions[J]. J. Mater. Eng. Perform., 2022, 31: 6858
doi: 10.1007/s11665-022-06688-6
|
26 |
Bardel D, Nelias D, Robin V, et al. Residual stresses induced by electron beam welding in a 6061 aluminium alloy[J]. J. Mater. Process. Technol., 2016, 235: 1
doi: 10.1016/j.jmatprotec.2016.04.013
|
27 |
Liu Y, Qin S W, Hao Q G, et al. Finite element simulation and experimental verification of internal stress of quenched AISI 4140 cylinders[J]. Metall. Mater. Trans., 2017, 48A: 1402
|
28 |
da Silva A D, Pedrosa T A, Gonzalez-Mendez J L, et al. Distortion in quenching an AISI 4140 C-ring—Predictions and experiments[J]. Mater. Des., 2012, 42: 55
doi: 10.1016/j.matdes.2012.05.031
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|