Please wait a minute...
金属学报  2023, Vol. 59 Issue (7): 893-904    DOI: 10.11900/0412.1961.2021.00267
  研究论文 本期目录 | 过刊浏览 |
EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为
张奇亮1, 王玉超2, 李光达3, 李先军3, 黄一1, 徐云泽1()
1大连理工大学 船舶工程学院 大连 116024
2中广核新能源海上风电(汕尾)有限公司 汕尾 516600
3深圳中广核工程设计有限公司 深圳 518000
Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes
ZHANG Qiliang1, WANG Yuchao2, LI Guangda3, LI Xianjun3, HUANG Yi1, XU Yunze1()
1School of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China
2CGN New Energy Offshore Wind Power Co., Ltd., Shanwei 516600, China
3China Nuclear Power Design Co. Ltd., Shenzhen 518000, China
引用本文:

张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
Qiliang ZHANG, Yuchao WANG, Guangda LI, Xianjun LI, Yi HUANG, Yunze XU. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. Acta Metall Sin, 2023, 59(7): 893-904.

全文: PDF(4160 KB)   HTML
摘要: 

利用电化学和失重测量、形貌表征以及计算流体力学仿真研究了EH36碳钢材料在含有不同粒径沙砾3.5%NaCl溶液中的低流速冲刷腐蚀行为。仿真结果表明,2 m/s较低流速下沙砾粒径的增大(100~850 μm)仍然能够提升沙砾的冲击能量。电化学和失重测量结果表明,腐蚀是低流速下导致EH36钢在含沙盐溶液中发生材料损伤的最主要因素。同时,腐蚀也是引起严重磨损发生的前提条件。随着沙砾粒径的增大,碳钢的冲刷腐蚀形貌从典型的“沿流体迹线腐蚀”转变为点蚀,表明沙砾冲击能量的增加引起点蚀萌发,进而加剧局部腐蚀。对比纯腐蚀、纯磨损和冲刷腐蚀的实验结果发现,沙砾粒径的增大导致腐蚀与磨损的协同作用效果增强。沙砾的冲击能量、局部阳极溶解和阳极液的转移共同决定了低流速下冲刷腐蚀的发展过程。

关键词 EH36钢CFD冲刷腐蚀沙砾粒径点蚀    
Abstract

Marine carbon steels are constantly subjected to active corrosion due to significant amounts of aggressive agents in seawater. Once sand particles are entrained in seawater, the relative movement between the seawater and marine structures could further lead to erosion-corrosion of marine carbon steels. The size of the sand particles would play an important role in the synergy of erosion and corrosion. In this work, the erosion-corrosion performances of the EH36 marine carbon steel at sand impacts of different particle sizes were studied in 3.5%NaCl solution using the EIS, gravimetric measurements, and surface morphology characterization. A computational fluid dynamics simulation is used to simulate the impact velocity and trajectory of the sand particles in the test cell. The simulation results reveal that at a relatively lower flow velocity of 2 m/s, the average impact velocity of the sand particles on the electrode surface is presented as a decreasing trend along with increasing size (100-850 μm). However, increment in the particle size could still lead to rise in the impact energy due to mass increase. The EIS and gravimetric measurement results show that at low flow rate conditions, corrosion is the main contributor to the steel degradation in the sand-containing electrolyte. Meanwhile, corrosion is the prerequisite for severe erosion in this case. The steel loss induced by erosion would rise with an increase in the particle size. The surface characterization results show that the erosion-corrosion pattern changed from the typical “flow mark” to pitting damage with increasing particle size. It suggests that the increase in the impact energy could lead to a pitting initiation, thereby accelerating localized corrosion. It was determined that the particle size increase would promote the synergy of erosion and corrosion compared to pure corrosion, pure erosion, and erosion-corrosion performances. The initiation and propagation of localized erosion-corrosion are determined by the coupled effect of local sand impacts, anodic dissolution, and flow-enhanced analyte transportation. When the diameter of the sand particle is 100 μm, the erosion-corrosion process is controlled by the analyte transportation, leading to the formation of a typical “flow mark”. When the diameter of the sand particle ranges from 430 μm to 850 μm, the synergy of the sand impact and local anodic dissolution would effectively retard the analyte transportation, resulting in the formation of stable pitting damage.

Key wordsEH36 steel    CFD    erosion-corrosion    sand particle size    pitting damage
收稿日期: 2021-07-02     
ZTFLH:  O646  
基金资助:国家重点研发计划项目(2022YFC2806204);工信部高技术船舶项目(MC-202030-H04);国家自然科学基金项目(52001055)
通讯作者: 徐云泽,xuyunze123@163.com,主要从事海洋结构物的局部腐蚀损伤机理和关键监测技术研究
Corresponding author: XU Yunze, associate professor, Tel: (0411)84706061, E-mail: xuyunze123@163.com
作者简介: 张奇亮,男,1997年生,博士生
图1  冲刷腐蚀实验装置
图2  3种不同粒径沙砾的SEM像
图3  用于计算流体力学(CFD)的搅拌电解池模型
图4  不同粒径沙砾在搅拌电解池中的迹线和速度分布
图5  含不同粒径沙砾盐溶液中测量得到的Nyquist图和Bode图(a) without sand (b) 100 μm (c) 430 μm (d) 850 μm
图6  含不同粒径沙砾盐溶液中的EH36钢腐蚀速率变化过程
图7  不同粒径沙砾冲击下碳钢冲刷腐蚀形貌表征
图8  3种不同粒径沙砾冲击下碳钢的纯磨损损伤形貌
图9  不同粒径沙砾冲击下碳钢的腐蚀分量、磨损分量、磨损加速腐蚀分量和腐蚀加速磨损分量
图10  不同粒径沙砾冲击下碳钢局部冲刷腐蚀发展机理
1 Zeng L, Guo X P, Zhang G A. Inhibition of the erosion-corrosion of a 90° low alloy steel bend [J]. J. Alloys Compd., 2017, 724: 827
doi: 10.1016/j.jallcom.2017.07.083
2 Zayed A, Garbatov Y, Soares C G. Corrosion degradation of ship hull steel plates accounting for local environmental conditions [J]. Ocean Eng., 2018, 163: 299
doi: 10.1016/j.oceaneng.2018.05.047
3 Chen F, Li Y D, Yang J, et al. Corrosion behavior of X80 steel welded joint in simulated natural gas condensate solutions [J]. Acta Metall. Sin., 2020, 56: 137
doi: 10.11900/0412.1961.2019.00237
3 陈 芳, 李亚东, 杨 剑 等. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为 [J]. 金属学报, 2020, 56: 137
4 Liu C S, Tian Z H, Zhang Z M, et al. Corrosion behaivour of X65 low carbon steel during redox state transition process of high level nuclear waste disposal [J]. Acta Metall. Sin., 2019, 55: 849
4 刘灿帅, 田朝晖, 张志明 等. 地质处置低氧过渡期X65低碳钢腐蚀行为研究 [J]. 金属学报, 2019, 55: 849
doi: 10.11900/0412.1961.2018.00481
5 Xia D X, Song S Z, Behnamian Y, et al. Review—Electrochemical noise applied in corrosion science: Theoretical and mathematical models towards quantitative analysis [J]. J. Electrochem. Soc., 2020, 167: 081507
6 Xu Y Z, Liu L, Zhou Q P, et al. An overview of major experimental methods and apparatus for measuring and investigating erosion-corrosion of ferrous-based steels [J]. Metals, 2020, 10: 180
doi: 10.3390/met10020180
7 Huang Y, Yang L J, Xu Y Z, et al. A novel system for corrosion protection of reinforced steels in the underwater zone [J]. Corros. Eng., Sci. Technol., 2016, 51: 566
doi: 10.3323/jcorr1991.51.566
8 Liu L, Xu Y Z, Xu C B, et al. Detecting and monitoring erosion-corrosion using ring pair electrical resistance sensor in conjunction with electrochemical measurements [J]. Wear, 2019, 428-429: 328
doi: 10.1016/j.wear.2019.03.025
9 Xia D H, Song S Z, Tao L, et al. Review-material degradation assessed by digital image processing: Fundamentals, progresses, and challenges [J]. J. Mater. Sci. Technol., 2020, 53: 146
doi: 10.1016/j.jmst.2020.04.033
10 Yi J Z, He S Y, Wang Z B, et al. Effect of impact angle on the critical flow velocity for erosion-corrosion of 304 stainless steel in simulated sand-containing sea water [J]. J. Bio Tribo Corros., 2021, 7: 99
doi: 10.1007/s40735-021-00538-z
11 Shang T, Zhong X K, Zhang C F, et al. Erosion-corrosion and its mitigation on the internal surface of the expansion segment of N80 steel tube [J]. Int. J. Miner., Metall. Mater., 2021, 28: 98
12 Zhong X K, Shang T, Zhang C F, et al. In situ study of flow accelerated corrosion and its mitigation at different locations of a gradual contraction of N80 steel [J]. J. Alloys Compd., 2020, 824: 153947
doi: 10.1016/j.jallcom.2020.153947
13 Yi J Z, Hu H X, Wang Z B, et al. On the critical flow velocity for erosion-corrosion in local eroded regions under liquid-solid jet impingement [J]. Wear, 2019, 422-423: 94
doi: 10.1016/j.wear.2019.01.069
14 Yi J Z, Hu H X, Wang Z B, et al. On the critical flow velocity for erosion-corrosion of Ni-based alloys in a saline-sand solution [J]. Wear, 2020, 458-459: 203417
doi: 10.1016/j.wear.2020.203417
15 Li K Q, Yang L J, Xu Y Z, et al. Influence of S O 4 2 - on the corrosion behavior of Q235B steel bar in simulated pore solution [J]. Acta Metall. Sin., 2019, 55: 457
15 李恺强, 杨璐嘉, 徐云泽 等. S O 4 2 - 对模拟孔隙液中Q235B钢筋腐蚀行为的影响 [J]. 金属学报, 2019, 55: 457
doi: 10.11900/0412.1961.2018.00475
16 Stack M M, James J S, Lu Q. Erosion-corrosion of chromium steel in a rotating cylinder electrode system: Some comments on particle size effects [J]. Wear, 2004, 256: 557
doi: 10.1016/S0043-1648(03)00565-9
17 Zheng Y G, Yu H, Jiang S L, et al. Effect of the sea mud on erosion-corrosion behaviors of carbon steel and low alloy steel in 2.4%NaCl solution [J]. Wear, 2008, 264: 1051
doi: 10.1016/j.wear.2007.08.008
18 Luo S Z, Zheng Y G, Li J, et al. Slurry erosion resistance of fusion-bonded epoxy powder coating [J]. Wear, 2001, 249: 733
doi: 10.1016/S0043-1648(01)00808-0
19 Jiang Z C, Yang Y, Peng H P, et al. Erosion corrosion behavior of X80 steel in multiphase flow with different sand particle sizes [J]. Oil-Gas Field Surface Eng., 2018, 37(11): 76
19 姜志超, 杨 燕, 彭浩平 等. X80钢在不同砂粒粒径下的多相流中的冲刷腐蚀行为 [J]. 油气田地面工程, 2018, 37(11): 76
20 Chen Z X, Hu H X, Guo X M, et al. Effect of groove depth on the slurry erosion of V-shaped grooved surfaces [J]. Wear, 2021, 488-489: 204133
doi: 10.1016/j.wear.2021.204133
21 Peng X, Wang J, Shan C, et al. Corrosion behavior of long-time immersed rusted carbon steel in flowing seawater [J]. Acta Metall. Sin., 2012, 48: 1260
doi: 10.3724/SP.J.1037.2012.00258
21 彭 欣, 王 佳, 山 川 等. 带锈碳钢在流动海水中的长期腐蚀行为 [J]. 金属学报, 2012, 48: 1260
22 Xu Y Z, Zhang Q L, Gao S, et al. Exploring the effects of sand impacts and anodic dissolution on localized erosion-corrosion in sand entraining electrolyte [J]. Wear, 2021, 478-479: 203907
doi: 10.1016/j.wear.2021.203907
23 He L M, Xu Y Z, Wang X N, et al. Understanding the propagation of nonuniform corrosion on a steel surface covered by marine sand [J]. Corrosion, 2019, 75: 1487
doi: 10.5006/3278
24 Stuparu A, Susan-Resiga R, Tanasa C. CFD assessment of the hydrodynamic performance of two impellers for a baffled stirred reactor [J]. Appl. Sci., 2021, 11: 4949
doi: 10.3390/app11114949
25 Xu Y Z, Zhou Q P, Liu L, et al. Exploring the corrosion performances of carbon steel in flowing natural sea water and synthetic sea waters [J]. Corros. Eng., Sci. Technol., 2020, 55: 579
26 Liu L, Xu Y Z, Zhu Y S, et al. The roles of fluid hydrodynamics, mass transfer, rust layer and macro-cell current on flow accelerated corrosion of carbon steel in oxygen containing electrolyte [J]. J. Electrochem. Soc., 2020, 167: 141510
doi: 10.1149/1945-7111/abc6c8
27 Zhu Y S, Xu Y Z, Wang M Y, et al. Understanding the influences of temperature and microstructure on localized corrosion of subsea pipeline weldment using an integrated multi-electrode array [J]. Ocean Eng., 2019, 189: 106351
doi: 10.1016/j.oceaneng.2019.106351
28 Stern M, Geary A L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves [J]. J. Electrochem. Soc., 1957, 104: 56
doi: 10.1149/1.2428496
29 Xu Y Z, Liu L, Xu C B, et al. Electrochemical characteristics of the dynamic progression of erosion-corrosion under different flow conditions and their effects on corrosion rate calculation [J]. J. Solid State Electrochem, 2020, 24: 2511
doi: 10.1007/s10008-020-04795-9
30 Xu Y Z, Tan M Y. Visualising the dynamic processes of flow accelerated corrosion and erosion corrosion using an electrochemically integrated electrode array [J]. Corros. Sci., 2018, 139: 438
doi: 10.1016/j.corsci.2018.05.032
31 Xu Y Z, Tan M Y. Probing the initiation and propagation processes of flow accelerated corrosion and erosion corrosion under simulated turbulent flow conditions [J]. Corros. Sci., 2019, 151: 163
doi: 10.1016/j.corsci.2019.01.028
32 Guo H X, Lu B T, Luo J L. Interaction of mechanical and electrochemical factors in erosion-corrosion of carbon steel [J]. Electrochim. Acta, 2005, 51: 315
doi: 10.1016/j.electacta.2005.04.032
33 Xu Y Z, Liu L, Zhou Q P, et al. Understanding the influences of pre-corrosion on the erosion-corrosion performance of pipeline steel [J]. Wear, 2020, 442-443: 203151
doi: 10.1016/j.wear.2019.203151
[1] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[2] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[3] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[4] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[5] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[6] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[7] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[8] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.
[9] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[10] 杨建海,张玉祥,葛利玲,陈家照,张鑫. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1413-1422.
[11] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[12] 陈雨来,罗照银,李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响[J]. 金属学报, 2015, 51(9): 1085-1091.
[13] 黄海威, 王镇波, 刘莉, 雍兴平, 卢柯. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响*[J]. 金属学报, 2015, 51(5): 513-518.
[14] 辛森森, 李谋成, 沈嘉年. 海水温度和浓缩度对316L不锈钢点蚀性能的影响*[J]. 金属学报, 2014, 50(3): 373-378.
[15] 刘莉, 李瑛, 王福会. 钝性纳米金属材料的电化学腐蚀行为研究:钝化膜生长和局部点蚀行为*[J]. 金属学报, 2014, 50(2): 212-218.