|
|
EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为 |
张奇亮1, 王玉超2, 李光达3, 李先军3, 黄一1, 徐云泽1( ) |
1大连理工大学 船舶工程学院 大连 116024 2中广核新能源海上风电(汕尾)有限公司 汕尾 516600 3深圳中广核工程设计有限公司 深圳 518000 |
|
Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes |
ZHANG Qiliang1, WANG Yuchao2, LI Guangda3, LI Xianjun3, HUANG Yi1, XU Yunze1( ) |
1School of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China 2CGN New Energy Offshore Wind Power Co., Ltd., Shanwei 516600, China 3China Nuclear Power Design Co. Ltd., Shenzhen 518000, China |
引用本文:
张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
Qiliang ZHANG,
Yuchao WANG,
Guangda LI,
Xianjun LI,
Yi HUANG,
Yunze XU.
Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. Acta Metall Sin, 2023, 59(7): 893-904.
1 |
Zeng L, Guo X P, Zhang G A. Inhibition of the erosion-corrosion of a 90° low alloy steel bend [J]. J. Alloys Compd., 2017, 724: 827
doi: 10.1016/j.jallcom.2017.07.083
|
2 |
Zayed A, Garbatov Y, Soares C G. Corrosion degradation of ship hull steel plates accounting for local environmental conditions [J]. Ocean Eng., 2018, 163: 299
doi: 10.1016/j.oceaneng.2018.05.047
|
3 |
Chen F, Li Y D, Yang J, et al. Corrosion behavior of X80 steel welded joint in simulated natural gas condensate solutions [J]. Acta Metall. Sin., 2020, 56: 137
doi: 10.11900/0412.1961.2019.00237
|
3 |
陈 芳, 李亚东, 杨 剑 等. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为 [J]. 金属学报, 2020, 56: 137
|
4 |
Liu C S, Tian Z H, Zhang Z M, et al. Corrosion behaivour of X65 low carbon steel during redox state transition process of high level nuclear waste disposal [J]. Acta Metall. Sin., 2019, 55: 849
|
4 |
刘灿帅, 田朝晖, 张志明 等. 地质处置低氧过渡期X65低碳钢腐蚀行为研究 [J]. 金属学报, 2019, 55: 849
doi: 10.11900/0412.1961.2018.00481
|
5 |
Xia D X, Song S Z, Behnamian Y, et al. Review—Electrochemical noise applied in corrosion science: Theoretical and mathematical models towards quantitative analysis [J]. J. Electrochem. Soc., 2020, 167: 081507
|
6 |
Xu Y Z, Liu L, Zhou Q P, et al. An overview of major experimental methods and apparatus for measuring and investigating erosion-corrosion of ferrous-based steels [J]. Metals, 2020, 10: 180
doi: 10.3390/met10020180
|
7 |
Huang Y, Yang L J, Xu Y Z, et al. A novel system for corrosion protection of reinforced steels in the underwater zone [J]. Corros. Eng., Sci. Technol., 2016, 51: 566
doi: 10.3323/jcorr1991.51.566
|
8 |
Liu L, Xu Y Z, Xu C B, et al. Detecting and monitoring erosion-corrosion using ring pair electrical resistance sensor in conjunction with electrochemical measurements [J]. Wear, 2019, 428-429: 328
doi: 10.1016/j.wear.2019.03.025
|
9 |
Xia D H, Song S Z, Tao L, et al. Review-material degradation assessed by digital image processing: Fundamentals, progresses, and challenges [J]. J. Mater. Sci. Technol., 2020, 53: 146
doi: 10.1016/j.jmst.2020.04.033
|
10 |
Yi J Z, He S Y, Wang Z B, et al. Effect of impact angle on the critical flow velocity for erosion-corrosion of 304 stainless steel in simulated sand-containing sea water [J]. J. Bio Tribo Corros., 2021, 7: 99
doi: 10.1007/s40735-021-00538-z
|
11 |
Shang T, Zhong X K, Zhang C F, et al. Erosion-corrosion and its mitigation on the internal surface of the expansion segment of N80 steel tube [J]. Int. J. Miner., Metall. Mater., 2021, 28: 98
|
12 |
Zhong X K, Shang T, Zhang C F, et al. In situ study of flow accelerated corrosion and its mitigation at different locations of a gradual contraction of N80 steel [J]. J. Alloys Compd., 2020, 824: 153947
doi: 10.1016/j.jallcom.2020.153947
|
13 |
Yi J Z, Hu H X, Wang Z B, et al. On the critical flow velocity for erosion-corrosion in local eroded regions under liquid-solid jet impingement [J]. Wear, 2019, 422-423: 94
doi: 10.1016/j.wear.2019.01.069
|
14 |
Yi J Z, Hu H X, Wang Z B, et al. On the critical flow velocity for erosion-corrosion of Ni-based alloys in a saline-sand solution [J]. Wear, 2020, 458-459: 203417
doi: 10.1016/j.wear.2020.203417
|
15 |
Li K Q, Yang L J, Xu Y Z, et al. Influence of S O 4 2 - on the corrosion behavior of Q235B steel bar in simulated pore solution [J]. Acta Metall. Sin., 2019, 55: 457
|
15 |
李恺强, 杨璐嘉, 徐云泽 等. S O 4 2 - 对模拟孔隙液中Q235B钢筋腐蚀行为的影响 [J]. 金属学报, 2019, 55: 457
doi: 10.11900/0412.1961.2018.00475
|
16 |
Stack M M, James J S, Lu Q. Erosion-corrosion of chromium steel in a rotating cylinder electrode system: Some comments on particle size effects [J]. Wear, 2004, 256: 557
doi: 10.1016/S0043-1648(03)00565-9
|
17 |
Zheng Y G, Yu H, Jiang S L, et al. Effect of the sea mud on erosion-corrosion behaviors of carbon steel and low alloy steel in 2.4%NaCl solution [J]. Wear, 2008, 264: 1051
doi: 10.1016/j.wear.2007.08.008
|
18 |
Luo S Z, Zheng Y G, Li J, et al. Slurry erosion resistance of fusion-bonded epoxy powder coating [J]. Wear, 2001, 249: 733
doi: 10.1016/S0043-1648(01)00808-0
|
19 |
Jiang Z C, Yang Y, Peng H P, et al. Erosion corrosion behavior of X80 steel in multiphase flow with different sand particle sizes [J]. Oil-Gas Field Surface Eng., 2018, 37(11): 76
|
19 |
姜志超, 杨 燕, 彭浩平 等. X80钢在不同砂粒粒径下的多相流中的冲刷腐蚀行为 [J]. 油气田地面工程, 2018, 37(11): 76
|
20 |
Chen Z X, Hu H X, Guo X M, et al. Effect of groove depth on the slurry erosion of V-shaped grooved surfaces [J]. Wear, 2021, 488-489: 204133
doi: 10.1016/j.wear.2021.204133
|
21 |
Peng X, Wang J, Shan C, et al. Corrosion behavior of long-time immersed rusted carbon steel in flowing seawater [J]. Acta Metall. Sin., 2012, 48: 1260
doi: 10.3724/SP.J.1037.2012.00258
|
21 |
彭 欣, 王 佳, 山 川 等. 带锈碳钢在流动海水中的长期腐蚀行为 [J]. 金属学报, 2012, 48: 1260
|
22 |
Xu Y Z, Zhang Q L, Gao S, et al. Exploring the effects of sand impacts and anodic dissolution on localized erosion-corrosion in sand entraining electrolyte [J]. Wear, 2021, 478-479: 203907
doi: 10.1016/j.wear.2021.203907
|
23 |
He L M, Xu Y Z, Wang X N, et al. Understanding the propagation of nonuniform corrosion on a steel surface covered by marine sand [J]. Corrosion, 2019, 75: 1487
doi: 10.5006/3278
|
24 |
Stuparu A, Susan-Resiga R, Tanasa C. CFD assessment of the hydrodynamic performance of two impellers for a baffled stirred reactor [J]. Appl. Sci., 2021, 11: 4949
doi: 10.3390/app11114949
|
25 |
Xu Y Z, Zhou Q P, Liu L, et al. Exploring the corrosion performances of carbon steel in flowing natural sea water and synthetic sea waters [J]. Corros. Eng., Sci. Technol., 2020, 55: 579
|
26 |
Liu L, Xu Y Z, Zhu Y S, et al. The roles of fluid hydrodynamics, mass transfer, rust layer and macro-cell current on flow accelerated corrosion of carbon steel in oxygen containing electrolyte [J]. J. Electrochem. Soc., 2020, 167: 141510
doi: 10.1149/1945-7111/abc6c8
|
27 |
Zhu Y S, Xu Y Z, Wang M Y, et al. Understanding the influences of temperature and microstructure on localized corrosion of subsea pipeline weldment using an integrated multi-electrode array [J]. Ocean Eng., 2019, 189: 106351
doi: 10.1016/j.oceaneng.2019.106351
|
28 |
Stern M, Geary A L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves [J]. J. Electrochem. Soc., 1957, 104: 56
doi: 10.1149/1.2428496
|
29 |
Xu Y Z, Liu L, Xu C B, et al. Electrochemical characteristics of the dynamic progression of erosion-corrosion under different flow conditions and their effects on corrosion rate calculation [J]. J. Solid State Electrochem, 2020, 24: 2511
doi: 10.1007/s10008-020-04795-9
|
30 |
Xu Y Z, Tan M Y. Visualising the dynamic processes of flow accelerated corrosion and erosion corrosion using an electrochemically integrated electrode array [J]. Corros. Sci., 2018, 139: 438
doi: 10.1016/j.corsci.2018.05.032
|
31 |
Xu Y Z, Tan M Y. Probing the initiation and propagation processes of flow accelerated corrosion and erosion corrosion under simulated turbulent flow conditions [J]. Corros. Sci., 2019, 151: 163
doi: 10.1016/j.corsci.2019.01.028
|
32 |
Guo H X, Lu B T, Luo J L. Interaction of mechanical and electrochemical factors in erosion-corrosion of carbon steel [J]. Electrochim. Acta, 2005, 51: 315
doi: 10.1016/j.electacta.2005.04.032
|
33 |
Xu Y Z, Liu L, Zhou Q P, et al. Understanding the influences of pre-corrosion on the erosion-corrosion performance of pipeline steel [J]. Wear, 2020, 442-443: 203151
doi: 10.1016/j.wear.2019.203151
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|