Please wait a minute...
金属学报  2023, Vol. 59 Issue (6): 787-796    DOI: 10.11900/0412.1961.2021.00375
  研究论文 本期目录 | 过刊浏览 |
高合金化GH4151合金复杂析出相演变行为
王法, 江河(), 董建新
北京科技大学 材料科学与工程学院 北京 100083
Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy
WANG Fa, JIANG He(), DONG Jianxin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
Fa WANG, He JIANG, Jianxin DONG. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. Acta Metall Sin, 2023, 59(6): 787-796.

全文: PDF(4352 KB)   HTML
摘要: 

利用OM、SEM及热力学计算等方法研究了GH4151合金在热处理过程中的组织演变行为。结果表明,高合金化导致合金的铸态组织复杂,包括Laves相、γ/γ′共晶、η相等低熔点相。由于各析出相的初熔温度不同,制定了三段式热处理,有效地消除了合金中的有害相。铸态GH4151合金中偏析元素Nb和Ti含量对低熔点相初熔温度的影响较大,Mo含量的影响相对较低,W含量的影响不明显。降低Ti含量,提高Nb、Mo含量可降低η相的初熔温度;提高Ti、Mo含量,降低Nb含量可降低Laves相的初熔温度。高含量的γ′相形成元素导致γ′相的组织演变行为具有冷却速率敏感性。15℃/min是GH4151合金中γ′相发生不规则生长的临界冷却速率。与低含量γ′相形成元素的合金相比,GH4151合金冷却速率高于15℃/min时,γ′相尺寸更大;冷却速率低于15℃/min时,γ′相不规则程度更高。高合金化的特点导致GH4151合金呈现复杂的组织演变行为。

关键词 GH4151合金热处理温度冷却速率组织演变    
Abstract

Designing high-performance aeroengine is important for development in the aviation industry. One of the key components is turbine disk material that can operate at 800oC. Among various methods for strengthening alloys, increasing the alloying degree is important, and GH4151 is one of the typical alloys with a high alloying degree. It comprises a large number of refractory metal elements and γ'-forming elements. OM, SEM, and JMatPro software were used to study the sensitivity of GH4151 microstructure evolution during heat treatment processes. The results show that a high alloying degree produces a complex microstructure with low-melting phases, such as Laves, γ/γ′ eutectic, and η phases. Due to the difference in incipient melting temperature of each precipitated phase, a three-stage heat treatment was developed to effectively eliminate the harmful phases in the alloy. The contents of segregation elements Nb and Ti in the as-cast GH4151 alloy have an obvious influence on the incipient melting temperature, whereas the effect of Mo content is relatively slight, and that of W content is not obvious. Decreasing Ti content while increasing Nb and Mo contents could reduce the incipient melting temperature of the η phase. Furthermore, increasing Ti and Mo contents while decreasing Nb content could reduce the incipient melting temperature of Laves phase. A large amount of γ'-forming elements contributes to the cooling rate sensitivity of γ′ phase evolution. 15oC/min is the critical value for the irregular growth of the γ' phase in the GH4151 alloy. When compared to alloys with low γ′-forming elements content, the γ′ phase in GH4151 alloy has a larger size when the cooling rate is > 15oC/min, and exhibits an irregular shape when the cooling rate is < 15oC/min. Thus, a high alloying degree contributes to the complex and sensitive microstructure evolution behavior of GH4151 alloy.

Key wordsGH4151 superalloy    heat treatment temperature    cooling rate    microstructure evolution
收稿日期: 2021-09-03     
ZTFLH:  TG156.1  
基金资助:高温结构材料重点实验室开放基金项目和中央高校基本科研业务费项目(FRF-TP-19-038A2)
通讯作者: 江 河,jianghe@ustb.edu.cn,主要从事高温合金的研究
Corresponding author: JIANG He, associate professor, Tel:13811910685, E-mail: jianghe@ustb.edu.cn
作者简介: 王 法,男,1995年生,博士生
图1  GH4151合金凝固过程的元素分布及凝固路径的热力学计算结果
图2  GH4151合金铸态组织的OM像及SEM像
RegionCAlTiVCrCoNiNbMoWPhase
A01.201.620.4121.2322.2025.5412.2413.652.34Laves
B06.528.1103.6312.6261.026.361.150.51η
C09.807.2802.9712.7269.073.131.040.14γ/γ' eutectic
D56.250.0810.840.250.340.361.4828.880.840.48MC carbide
表1  铸态GH4151合金枝晶间各析出相的化学成分 (atomic fraction / %)
图3  GH4151合金不同温度保温10 min后水冷组织形貌的SEM像
图4  基于关键温度区间确立的热处理条件下GH4151合金显微组织的SEM像
图5  基于JMatPro热力学软件计算得到不同合金的γ'相析出行为
图6  过固溶态GH4151合金在不同冷却速率下γ'相形貌的SEM像(冷却速率≥炉冷)
图7  过固溶态GH4151合金在不同冷却速率下γ′相形貌的SEM像(冷却速率<炉冷)
图8  不同合金γ'相平均尺寸与冷却速率的关系
图9  过固溶态的不同高温合金以10℃/min冷却后的SEM像和不规则因子(ξ)
图10  偏析元素Ti、Nb、Mo和W含量对低熔点相初熔温度的影响
图11  γ'相冷却速率敏感性-合金化程度-冷却速率关联性示意图
1 Xiang X M, Jiang H, Dong J X, et al. As-cast microstructure characteristic and homogenization of a newly developed hard-deformed Ni-based superalloy GH4975 [J]. Acta Metall. Sin., 2020, 56: 988
1 向雪梅, 江 河, 董建新 等. 难变形高温合金GH4975的铸态组织及均匀化 [J]. 金属学报, 2020, 56: 988
2 Lv S M. Research on hot deformation behavior and microstructure-properties control of GH4151 alloy [D]. Beijing: University of Science and Technology Beijing, 2021
2 吕少敏. GH4151合金高温变形行为及组织与性能控制研究 [D]. 北京: 北京科技大学, 2021
3 Zhang B J, Huang S, Zhang W Y, et al. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques [J]. Acta Metall. Sin., 2019, 55: 1095
3 张北江, 黄 烁, 张文云 等. 变形高温合金盘材及其制备技术研究进展 [J]. 金属学报, 2019, 55: 1095
4 Lv S M, Jia C L, He X B, et al. Superplastic deformation and dynamic recrystallization of a novel disc superalloy GH4151 [J]. Materials, 2019, 12: 3667
doi: 10.3390/ma12223667
5 Zhao X B, Dang Y Y, Yin H F, et al. Thermodynamic calculations of precipitation of TCP phase and carbide phase of Ni-Fe base superalloys for ultra-supercritical power plants [J]. J. Mater. Eng., 2015, 43(5): 38
5 赵新宝, 党莹樱, 尹宏飞 等. 超超临界电站用镍铁基高温合金TCP相和碳化物相析出的热力学计算 [J]. 材料工程, 2015, 43(5):38
6 Li X X, Jia C L, Zhang Y, et al. Segregation and homogenization for a new nickel-based superalloy [J]. Vacuum, 2020, 177: 109379
doi: 10.1016/j.vacuum.2020.109379
7 Tan Y G, Liu F, Zhang A W, et al. Element segregation and solidification behavior of a Nb, Ti, Al Co-strengthened superalloy ЭК151 [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1298
doi: 10.1007/s40195-019-00894-3
8 Tan Y G. Investigation of solidification and high-temperature deformation behavior of Ni-base alloy ЭК151 [D]. Shenyang: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2019
8 谭远过. 新型镍基高温合金ЭК151凝固偏析及高温变形行为研究 [D]. 沈阳: 中国科学技术大学(中国科学院金属研究所), 2019
9 Bi Z N, Qu J L, Du J H, et al. Segregation behavior and investigation on homogenization for a new difficult-to-deform superalloy ЭК151 ingot [J]. J. Iron Steel Res., 2011, 23(): 263
9 毕中南, 曲敬龙, 杜金辉 等. 新型难变形高温合金ЭК151的偏析行为及均匀化工艺研究 [J]. 钢铁研究学报, 2011, 23(): 263
10 Winterton R H S. Newton's law of cooling [J]. Contemp. Phys., 1999, 40: 205
doi: 10.1080/001075199181549
11 Zhao G D. Effect of B and C on solidification segregation and hot ductility of U720Li alloy [D]. Shenyang: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2017
11 赵广迪. B和C对U720Li合金凝固偏析和热加工塑性的影响 [D]. 沈阳: 中国科学技术大学(中国科学院金属研究所), 2017
12 Qu J L, Yi C S, Chen J W, et al. Research progress of precipitated phase in GH4720Li superalloy [J]. J. Mater. Eng., 2020, 48(8): 73
12 曲敬龙, 易出山, 陈竞炜 等. GH4720Li合金中析出相的研究进展 [J]. 材料工程, 2020, 48(8): 73
13 Wang T, Wan Z P, Li Z, et al. Effect of heat treatment parameters on microstructure and hot workability of as-cast fine grain ingot of GH4720Li alloy [J]. Acta Metall. Sin., 2020, 56: 182
doi: 10.11900/0412.1961.2019.00205
13 王 涛, 万志鹏, 李 钊 等. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响 [J]. 金属学报, 2020, 56: 182
14 Liu S H, Si J Y, Chen L. Effect of thermal processing on critical grain growth of extruded FGH4096 alloy [J]. Chin. J. Nonferrous Met., 2020, 30: 1317
14 刘松浩, 司家勇, 陈 龙. 热加工工艺对挤压态FGH4096合金临界晶粒长大的影响 [J]. 中国有色金属学报, 2020, 30: 1317
15 Wang D, Liu Z, Wang J G, et al. Study on microstructure and properties of shaped ring parts for super alloy GH4738 [J]. Forg. Stamp. Technol., 2020, 45(5): 128
doi: 10.13330/j.issn.1000-3940.2020.05.022
15 王 丹, 刘 智, 王建国 等. GH4738高温合金异形环件组织与性能研究 [J]. 锻压技术, 2020, 45(5): 128
16 Yan X F, Dong J X, Shi Z X, et al. Solidification and segregation behavior of nickel-based superalloy GH4282 [J]. Rare Met. Mater. Eng., 2019, 48: 3183
16 颜晓峰, 董建新, 石照夏 等. 镍基高温合金GH4282的凝固和偏析行为 [J]. 稀有金属材料与工程, 2019, 48: 3183
17 Radis R, Schaffer M, Albu M, et al. Multimodal size distributions of γ′ precipitates during continuous cooling of UDIMET 720 Li [J]. Acta Mater., 2009, 57: 5739
doi: 10.1016/j.actamat.2009.08.002
18 Semiatin S, Zhang F, Tiley J, et al. A comparison of the precipitation behavior in PM γ-γ' nickel-base superalloys [J]. Mater. High. Temp., 2016, 33: 301
doi: 10.1080/09603409.2016.1165449
19 Xu C, Liu F, Huang L, et al. Dependence of creep performance and microstructure evolution on solution cooling rate in a polycrystalline superalloy [J]. Metals, 2018, 8: 4
doi: 10.3390/met8010004
20 Shin K Y, Kim J H, Terner M, et al. Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy [J]. Mater. Sci. Eng., 2019, A751: 311
21 Masoumi F, Shahriari D, Jahazi M, et al. Kinetics and mechanisms of γ' reprecipitation in a Ni-based superalloy [J]. Sci. Rep., 2016, 6: 28650
doi: 10.1038/srep28650 pmid: 27338868
22 Kong D C, Dong C F, Ni X Q, et al. High-throughput fabrication of nickel-based alloys with different Nb contents via a dual-feed additive manufacturing system: Effect of Nb content on microstructural and mechanical properties [J]. J. Alloys Compd., 2019, 785: 826
doi: 10.1016/j.jallcom.2019.01.263
23 Lopez-Galilea I, Koßmann J, Kostka A, et al. The thermal stability of topologically close-packed phases in the single-crystal Ni-base superalloy ERBO/1 [J]. J. Mater. Sci., 2016, 51: 2653
doi: 10.1007/s10853-015-9579-7
24 Jiang H, Dong J X, Zhang M C, et al. Development of typical hard-to-deform nickel-base superalloy for turbine disk served above 800oC [J]. Aeron. Manuf. Technol., 2021, 64(1): 62
24 江 河, 董建新, 张麦仓 等. 800℃以上服役涡轮盘用难变形镍基高温合金研究进展 [J]. 航空制造技术, 2021, 64(1): 62
25 Yoo Y S. Morphological instability of spherical γ′ precipitates in a nickel base superalloy [J]. Scr. Mater., 2005, 53: 81
doi: 10.1016/j.scriptamat.2005.03.022
26 Henry M F, Yoo Y S, Yoon D Y, et al. The dendritic growth of γ′ precipitates and grain boundary serration in a model nickel-base superalloy [J]. Metall. Mater. Trans., 1993, 24A: 1733
27 Krutz N, Shen C, Karadge M, et al. An approach toward understanding unstable gamma prime precipitate evolution and its effect on properties [A]. Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys [C]. Cham: Springer, 2020: 691
28 Zhang L, Li D, Qu X H, et al. Microstructure and tensile properties optimization of MIM418 superalloy by heat treatment [J]. J. Mater. Process. Technol., 2016, 227: 71
doi: 10.1016/j.jmatprotec.2015.08.001
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[5] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[8] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[9] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[10] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[11] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[12] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[13] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[14] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[15] 李亚强, 刘建华, 邓振强, 仇圣桃, 张佩, 郑桂芸. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.