Please wait a minute...
金属学报  2023, Vol. 59 Issue (7): 961-968    DOI: 10.11900/0412.1961.2022.00438
  研究论文 本期目录 | 过刊浏览 |
Cr2AlC涂层相结构演变对力学性能的影响
袁江淮1,2, 王振玉2, 马冠水2, 周广学2, 程晓英1, 汪爱英2()
1上海大学 材料科学与工程学院 上海 200072
2中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 宁波 315201
Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating
YUAN Jianghuai1,2, WANG Zhenyu2, MA Guanshui2, ZHOU Guangxue2, CHENG Xiaoying1, WANG Aiying2()
1School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
2Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
Jianghuai YUAN, Zhenyu WANG, Guanshui MA, Guangxue ZHOU, Xiaoying CHENG, Aiying WANG. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. Acta Metall Sin, 2023, 59(7): 961-968.

全文: PDF(2192 KB)   HTML
摘要: 

采用电弧复合磁控溅射技术在镍基高温合金基底表面沉积了Cr-Al-C涂层,通过后续热处理获得了高纯Cr2AlC MAX相涂层,研究了Cr2AlC涂层在1073、1123、1173和1223 K退火2 h后的微观结构演变及其对力学性能的影响。利用XRD、SEM和EDS表征了涂层的相结构、表面/截面形貌和元素分布,利用Vickers压痕仪和纳米压痕仪分析了涂层的硬度和韧性等力学性能。结果表明,随着退火温度的升高,Cr2AlC相逐步分解转变为Cr2Al、Cr7C3和Cr23C6相,元素间扩散作用逐渐增强,但相结构演变没有导致涂层/基底界面的失配,且涂层依然能够保持较高的硬度(超过11 GPa)和弹性模量(超过280 GPa)。由于脆性CrC x 相的形成和Al元素的扩散,高温退火后涂层的韧性有轻微下降。

关键词 Cr2AlC涂层相结构演变热稳定性力学性能GH4169镍基高温合金    
Abstract

With the rapid advancements in high-tech aeroengines and gas turbines, surface protective coatings are of increasing interest for enhancing the mechanical and corrosive performances of blade components under harsh high-temperature conditions. Owing to the unique nanolaminate structure, Cr2AlC coating, a typical Cr-Al-C ceramic comprising MAX phases, provides an excellent combination of metallic and ceramic properties, including high-temperature oxidation resistance and superior damage tolerance. In this work, Cr2AlC coatings were achieved on nickel-based superalloy substrates using a hybrid deposition system with a cathodic arc and magnetron sputtering source and subsequent annealing. Particularly, the effect of microstructure evolution on the mechanical properties of Cr2AlC coating was studied under various thermal annealing temperatures of 1073, 1123, 1173, and 1223 K for 2 h. The phase structure, surface morphology, cross-sectional morphology, and elemental distribution of the coatings were characterized by XRD, SEM, and EDS. The mechanical properties, including the hardness and toughness of the coatings, were tested by nanoindentation and Vickers indentation. The results showed that the Cr2AlC MAX phase was decomposed and transformed into Cr2Al, Cr7C3, and Cr27C6 phases at higher annealing temperatures, and element diffusion of the coatings was also observed. Moreover, it was noted that the transition in the phase structure did not lead to the misfit of the interface, and the coatings maintained both a high hardness of 11 GPa and elastic modulus of 280 GPa, regardless of the annealing process. The slight decrease in toughness for annealed coatings could be attributed in the formation of brittle chromium carbides and Al element diffusion. Such Cr2AlC MAX phase coatings are promising candidates as protective materials for wide applications in harsh high-temperatures applications.

Key wordsCr2AlC coating    phase-structure evolution    thermal stability    mechanical property    GH4169 nickel-based superalloy
收稿日期: 2022-09-05     
ZTFLH:  TG178  
基金资助:国家自然科学基金项目(52025014);国家自然科学基金项目(52171090);国家自然科学基金项目(52101109);宁波市自然科学基金项目(2021J220)
通讯作者: 汪爱英,aywang@nimte.ac.cn,主要从事表面强化涂层材料与功能改性研究
Corresponding author: WANG Aiying, professor, Tel: (0574)86685170, E-mail: aywang@nimte.ac.cn
作者简介: 袁江淮,男,1997年生,硕士
图1  电弧复合磁控溅射设备示意图
图2  Cr2AlC涂层及其在不同温度下退火2 h后的XRD谱
SampleAnnealingPhase
temperature / K
S0-Cr2AlC
S11073Cr2AlC, Cr2Al, Cr7C3
S21123Cr7C3, Cr2Al, NiAl
S31173Cr23C6, Cr7C3, NiAl
S41223Cr23C6, Al2O3, NiAl
表1  Cr2AlC涂层及其在不同温度下退火后的相组成
PhaseDebye temperature / KHardness / GPa
Ref.Ref.Ref.Ref.Ref.Ref.
[23][24][25][23][26][27]
Cr7C373156264613.518.318.0
Cr23C674467469110.113.216.5
表2  Cr7C3与Cr23C6的Debye温度和硬度对比[23~27]
图3  S1~S4样品的表面形貌和S4样品的EDS元素面分布
图4  S1~S4样品的截面形貌和EDS元素面分布
图5  S1~S4样品的载荷-位移曲线
SampleH / GPaE / GPaH / E(H 3 / E 2) / GPa
S112.39313.430.0400.020
S213.53330.740.0420.024
S311.12286.400.0390.017
S414.46345.170.0420.026
表3  S1~S4样品硬度(H)、模量(E)、H / E和H 3 / E 2
图6  S1~S4样品的Vickers压痕形貌
图7  Cr2AlC涂层高温相结构演变对力学性能影响的示意图
1 Qu X M, Zhang Y K, Liu J. Numerical simulation on residual stress field of flat-topped laser oblique shocking of Ni-based alloy GH4169 [J]. Adv. Mater. Sci. Eng., 2020, 2020: 8824824
2 Akca E, Gursel A. A review on superalloys and IN718 nickel-based INCONEL superalloy [J]. Period. Eng. Nat. Sci., 2015, 3: 15
3 Berger O. The correlation between structure, multifunctional properties and application of PVD MAX phase coatings. Part III. Multifunctional applications [J]. Surf. Eng., 2020, 36: 303
doi: 10.1080/02670844.2019.1656861
4 Darolia R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: Critical review of challenges, progress and prospects [J]. Int. Mater. Rev., 2019, 64: 355
doi: 10.1080/09506608.2018.1516713
5 Ma G S, Yuan J H, Chen R D, et al. Balancing the corrosion resistance and conductivity of Cr-Al-C coatings via annealing treatment for metal bipolar plates [J]. Appl. Surf. Sci., 2022, 597: 153670
doi: 10.1016/j.apsusc.2022.153670
6 Tian Z H, Zhang P G, Liu Y S, et al. Research progress and outlook of metal whisker spontaneous growth on MAX phase substrates [J]. Acta Metall. Sin., 2022, 58: 295
6 田志华, 张培根, 刘玉爽 等. MAX相表面金属晶须自发生长现象的研究现状与展望 [J]. 金属学报, 2022, 58: 295
doi: 10.11900/0412.1961.2021.00119
7 Li W T, Wang Z Y, Zhang D, et al. Preparation of Ti2AlC coating by the combination of a hybrid cathode arc/magnetron sputtering with post-annealing [J]. Acta Metall. Sin., 2019, 55: 647
7 李文涛, 王振玉, 张 栋 等. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层 [J]. 金属学报, 2019, 55: 647
8 Sokol M, Yang J, Keshavan H, et al. Bonding and oxidation protection of Ti2AlC and Cr2AlC for a Ni-based superalloy [J]. J. Eur. Ceram. Soc., 2019, 39: 878
doi: 10.1016/j.jeurceramsoc.2018.10.019
9 Li J J, Qian Y H, Niu D, et al. Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment [J]. Appl. Surf. Sci., 2012, 263: 457
doi: 10.1016/j.apsusc.2012.09.082
10 Go T, Sohn Y J, Mauer G, et al. Cold spray deposition of Cr2AlC MAX phase for coatings and bond-coat layers [J]. J. Eur. Ceram. Soc., 2019, 39: 860
doi: 10.1016/j.jeurceramsoc.2018.11.035
11 Wang Z Y, Ma G S, Liu L L, et al. High-performance Cr2AlC MAX phase coatings: Oxidation mechanisms in the 900-1100oC temperature range [J]. Corros. Sci., 2020, 167: 108492
doi: 10.1016/j.corsci.2020.108492
12 Shamsipoor A, Farvizi M, Razavi M, et al. Hot corrosion behavior of Cr2AlC MAX phase and CoNiCrAlY compounds at 950oC in presence of Na2SO4 + V2O5 molten salts [J]. Ceram. Int., 2021, 47: 2347
doi: 10.1016/j.ceramint.2020.09.077
13 Li H L, Li S B, Du X S, et al. Thermal shock behavior of Cr2AlC in different quenching media [J]. Mater. Lett., 2016, 167: 131
doi: 10.1016/j.matlet.2015.12.160
14 Chen Y, Chu M Y, Wang L J, et al. Synthesis of Cr2AlC by hot pressing and thermodynamic analysis [J]. Chin. J. Rare Met., 2012, 36: 930
14 陈 洋, 储茂友, 王力军 等. 热压合成Cr2AlC化合物及热力学分析 [J]. 稀有金属, 2012, 36: 930
15 Pang W K, Low I M, O'connor B H, et al. Comparison of thermal stability in MAX 211 and 312 phases [J]. J. Phys: Conf. Ser., 2010, 251: 012025
16 Griseri M, Tunca B, Lapauw T, et al. Synthesis, properties and thermal decomposition of the Ta4AlC3 MAX phase [J]. J. Eur. Ceram. Soc., 2019, 39: 2973
doi: 10.1016/j.jeurceramsoc.2019.04.021
17 Zhang Z R, Qian Y H, Xu J J, et al. Effect of annealing on microstructure evolution and corrosion resistance of an amorphous Cr-Al-C coating [J]. Corros. Sci., 2021, 178: 109062
doi: 10.1016/j.corsci.2020.109062
18 Brüsewitz C, Knorr I, Hofsäss H, et al. Single crystal pillar microcompression tests of the MAX phases Ti2InC and Ti4AlN3 [J]. Scr. Mater., 2013, 69: 303
doi: 10.1016/j.scriptamat.2013.05.002
19 Zha X, Wang N, Jiang F, et al. Performance evaluation of PVD coatings due to sequential indentation tests [J]. Surf. Eng., 2017, 33: 597
doi: 10.1080/02670844.2016.1161947
20 Chen Z P, Cao C H, Wang H P, et al. The deposition of superconducting TiN thin film by using DC magnetron sputtering [J]. Chin. J. Low Temp.Phys., 2017, 39(3): 7
20 陈志平, 曹春海, 王海萍 等. 直流磁控溅射制备超导TiN薄膜 [J]. 低温物理学报, 2017, 39(3): 7
21 Li J M, Jing J, He J, et al. Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures [J]. Mater. Des., 2020, 193: 108776
doi: 10.1016/j.matdes.2020.108776
22 Zhang H. First-principles study of the electrical, mechanical and thermodynamic properties of a novel MAX phase material Hf2PB [D]. Xiangtan: Xiangtan University, 2018
22 张 衡. MAX相材料Hf2PB电学、力学和热学性质的第一性原理研究 [D]. 湘潭: 湘潭大学, 2018
23 Sun L, Ji X S, Zhao L, et al. First principles investigation of binary chromium carbides Cr7C3, Cr3C2 and Cr23C6: Electronic structures, mechanical properties and thermodynamic properties under pressure [J]. Materials, 2022, 15: 558
doi: 10.3390/ma15020558
24 Jiang C. First-principles study of structural, elastic, and electronic properties of chromium carbides [J]. Appl. Phys. Lett., 2008, 92: 041909
25 Min T, Gao Y M, Li Y F, et al. First-principles calculations study on the electronic structures, hardness and Debye temperatures of chromium carbides [J]. Rare Met. Mater. Eng., 2012, 41: 271
25 闵 婷, 高义民, 李烨飞 等. 第一性原理研究碳化铬的电子结构、硬度和德拜温度 [J]. 稀有金属材料与工程, 2012, 41: 271
26 Li Y F, Gao Y M, Xiao B, et al. The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations [J]. J. Alloys Compd., 2011, 509: 5242
doi: 10.1016/j.jallcom.2011.02.009
27 Hirota K, Mitani K, Yoshinaka M, et al. Simultaneous synthesis and consolidation of chromium carbides (Cr3C2, Cr7C3 and Cr23C6) by pulsed electric-current pressure sintering [J]. Mater. Sci. Eng., 2005, A399: 154
28 Azina C, Mráz S, Greczynski G, et al. Oxidation behaviour of V2AlC MAX phase coatings [J]. J. Eur. Ceram. Soc., 2020, 40: 4436
doi: 10.1016/j.jeurceramsoc.2020.05.080
29 Liu J K, Qi J L, Cao J, et al. Study on vacuum brazing of DD3 Ni-base superalloy and Ti3AlC2 ceramic [J]. Trans. China Weld. Inst., 2014, 35(3): 41
29 刘甲坤, 亓钧雷, 曹 健 等. DD3高温合金与Ti3AlC2陶瓷的真空钎焊 [J]. 焊接学报, 2014, 35(3): 41
30 Ying G B, He X D, Li M W, et al. Effect of Cr7C3 on the mechanical, thermal, and electrical properties of Cr2AlC [J]. J. Alloys Compd., 2011, 509: 8022
doi: 10.1016/j.jallcom.2011.04.134
31 Liu J Z, Zuo X, Wang Z Y, et al. Fabrication and mechanical properties of high purity of Cr2AlC coatings by adjustable Al contents [J]. J. Alloys Compd., 2018, 753: 11
doi: 10.1016/j.jallcom.2018.04.100
32 Dong M L. Study on residual stress of thin films by nanoindentation technology [D]. Harbin: Harbin Engineering University, 2015
32 董美伶. 基于纳米压痕技术的薄膜残余应力研究 [D]. 哈尔滨: 哈尔滨工程大学, 2015
33 Zhang L, Huang Z F, Chang L, et al. Synthesis of single-phase Cr7C3 bulk with phenolic resin addition by hot pressing and its mechanical properties [J]. Mater. Res. Express, 2017, 4: 086504
34 Jiang D X, Fu Y, Zhang J W, et al. Preparation and properties of alumina ceramic film on Ti-alloy surface [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 469
34 姜冬雪, 付 颖, 张峻巍 等. 钛合金表面Al2O3陶瓷膜制备及性能研究 [J]. 中国腐蚀与防护学报, 2019, 39: 469
doi: 10.11902/1005.4537.2018.173
35 Shuai J T, Zuo X, Wang Z Y, et al. Erosion behavior and failure mechanism of Ti/TiAlN multilayer coatings eroded by silica sand and glass beads [J]. J. Mater. Sci. Technol., 2021, 80: 179
doi: 10.1016/j.jmst.2021.01.001
36 Wang Y X, Guan W, Fischer C B, et al. Microstructures, mechanical properties and tribological behaviors of amorphous carbon coatings in-situ grown on polycarbonate surfaces [J]. Appl. Surf. Sci., 2021, 563: 150309
doi: 10.1016/j.apsusc.2021.150309
37 Zhang Y, Guo L, Zhao X X, et al. Toughening effect of Yb2O3 stabilized ZrO2 doped in Gd2Zr2O7 ceramic for thermal barrier coatings [J]. Mater. Sci. Eng., 2015, A648: 385
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[9] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[10] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.