Please wait a minute...
金属学报  2022, Vol. 58 Issue (9): 1179-1188    DOI: 10.11900/0412.1961.2021.00078
  研究论文 本期目录 | 过刊浏览 |
GH2909低膨胀高温合金热处理中的组织演变行为
李钊1, 江河2(), 王涛1, 付书红1, 张勇1
1.中国航发北京航空材料研究院 先进高温结构材料重点实验室 北京 100095
2.北京科技大学 材料科学与工程学院 北京 100083
Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment
LI Zhao1, JIANG He2(), WANG Tao1, FU Shuhong1, ZHANG Yong1
1.Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
Zhao LI, He JIANG, Tao WANG, Shuhong FU, Yong ZHANG. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. Acta Metall Sin, 2022, 58(9): 1179-1188.

全文: PDF(3432 KB)   HTML
摘要: 

采用SEM、TEM、EPMA及萃取相分析等多种手段相结合对GH2909低膨胀高温合金在标准热处理过程中的组织演变规律进行分析。结果表明,锻态GH2909合金中主要析出相是块状和短棒状含Si的Laves相,Laves相在980℃固溶过程中逐渐发生部分回溶,两阶段固溶后短棒状Laves相基本消失。标准热处理后GH2909合金晶界上出现颗粒状的G相呈断续排列,晶内有盘片状ε相大量析出。基体中有细小的、以Ni和Ti为主要元素的γ′相,结构式为Ni2.26Fe0.16Co0.50Nb0.62Ti0.43Al0.02。GH2909合金中的Laves相、ε相、G相均为富Nb、富Si相,萃取相分析结果表明GH2909合金中30%左右的Si元素在标准热处理后以析出相形式存在,GH2909合金的组织控制中应关注Si元素的作用。

关键词 GH2909合金低膨胀高温合金热处理组织演变    
Abstract

GH2909 alloy is a low expansion superalloy developed on the base of GH2907 alloy. The mass fraction of Si is increased to accelerate the precipitation of ε phase, which improves resistance to stress-induced oxidative brittleness at grain boundaries. Increasing the mass fraction of Si also complicates the types of precipitates, and there is a long-time argument for determining precipitates in GH2909 alloy. The mechanical property is closely related to microstructure and precipitate. This work investigated the microstructure evolution of GH2909 low expansion superalloy during standard heat treatment by SEM, TEM, EPMA, and micro-chemical phase analysis. The Laves phase is the predominant phase in the wrought GH2909 alloy, according to the study. In the GH2909 alloy, the Si-rich Laves phase has a blocky form and a short rod shape. In solution treatment, the Laves phase dissolves gradually. After two-stage solution treatment, the short rod-shaped Laves phase almost completely dissolves. Slow cooling is needed to avoid re-precipitation of short rod shape Laves phase during solution treatment because Laves phase is sensitive to the cooling rate. Discontinuous G phase particles decorate grain boundaries after normal heat treatment, and a sizable discal phase precipitates in the matrix. There is also a fine phase rich in Ni and Ti in the matrix with the chemical formula Ni2.26Fe0.16Co0.50Nb0.62Ti0.43Al0.02. In the GH2909 alloy, the Laves phase, G phase, and ε phase are high in Si and Nb. During precipitation, these phases compete for Si and Nb elements. Furthermore, the micro-chemical phase analysis results demonstrate that 30% of the Si in the GH2909 alloy is finally precipitated. As a result, Si should be given special consideration in the microstructure control of the GH2909 alloy.

Key wordsGH2909 alloy    low expansion superalloy    heat treatment    microstructure evolution
收稿日期: 2021-02-25     
ZTFLH:  TG 146.1  
基金资助:国家自然科学基金项目(51701011);中央高校基本科研业务费项目(FRF-TP-19-038A2);重点实验室基金一般项目(6142903180205)
作者简介: 李 钊,男,1985年生,高级工程师,硕士
No.Heat treatment
T0As forged
T1980oC, 15 min, air cooling (AC)
T2980oC, 15 min, AC + 980oC, 1 h, AC
T3980oC, 15 min, AC + 980oC, 1 h, water cooling (WQ)
T4980oC, 15 min, AC + 980oC, 1 h, AC + 720oC, 8 h, furnace cooling (0.9oC·min-1) to 620oC, 8 h, AC
表1  实验用GH2909合金热处理工艺
图1  GH2909合金JMatPro计算结果
图2  GH2909合金锻态组织特征
图3  锻态GH2909合金中Laves相的TEM像及选区电子衍射(SAED)花样
图4  锻态GH2909合金中Laves相元素分布的EPMA结果
图5  固溶处理对GH2909合金组织的影响
图6  标准热处理态(T4) GH2909合金显微组织的SEM像
图7  标准热处理态GH2909合金(T4)晶界上G相的TEM像和SAED花样
图8  标准热处理态GH2909合金(T4)析出相元素分布的EPMA结果
图9  标准热处理态GH2909合金(T4)中γ′相的TEM像
图10  标准热处理态GH2909合金(T4)中ε相TEM像及EDS分析
图11  标准热处理态GH2909合金(T4)中ε相的不均匀分布情况
图12  GH2909合金热处理不同阶段萃取相分析结果
1 Fan Q W, Sun Y. Investigation on heat treatment properties of GH2909 [J]. MW Met. Form., 2015, (13): 18
1 范黔伟, 孙 艳. GH2909热处理工艺性能的研究 [J]. 金属加工(热加工), 2015, (13): 18
2 Fan Z Y, Li X M, Song C R, et al. Effect of Si content on properties of GH2909 alloy [J]. Hot Work. Technol., 2017, 46(14): 107
2 樊照远, 李许明, 宋传荣 等. Si含量对GH2909合金性能的影响 [J]. 热加工工艺, 2017, 46(14): 107
3 Hayes R W, Smith D F, Wanner E A, et al. Effect of environment on the rupture behavior of alloys 909 and 718 [J]. Mater. Sci. Eng., 1994, A177: 43
4 Wang X C, Han G W, Yang Y J. Study on the forging pocess of low expansion alloy GH2909 [J]. Spec. Steel Technol., 2017, 23(3): 37
4 王信才, 韩光炜, 杨玉军. 低膨胀GH2909合金锻造工艺研究 [J]. 特钢技术, 2017, 23(3): 37
5 Lagow B W. Materials selection in gas turbine engine design and the role of low thermal expansion materials [J]. JOM, 2016, 68: 2770
doi: 10.1007/s11837-016-2071-2
6 Yu M, Cai K H, Li Z R, et al. Low thermal expansion superalloy [J]. Res. Metall. Mater., 2017, 43(2): 21
6 于 敏, 蔡凯洪, 李振瑞 等. 低膨胀高温合金概述 [J]. 金属材料研究, 2017, 43(2): 21
7 Xu X, Li Z, Wan Z P, et al. Effect of long-term aging on properties of low expansion superalloy GH2909 [J]. Chin. J. Mater. Res., 2021, 35: 330
7 徐 雄, 李 钊, 万志鹏 等. 长期时效对低膨胀高温合金GH2909性能的影响 [J]. 材料研究学报, 2021, 35: 330
8 Zhao Y X, Zhang S W. Oxidation behavior of alloy GH2909 at 700oC [A]. High Temperature Structural Materials for Power and Energy—11th China Superalloy Annual Conference [C]. Beijing, China: Metallurgical Industry Press, 2007: 79
8 赵宇新, 张绍维. GH2909合金在700℃的氧化行为 [A]. 动力与能源用高温结构材料——第十一届中国高温合金年会论文集 [C]. 北京, 中国: 冶金工业出版社, 2007: 79
9 Wang C M, Cai Y Z, Hu C J, et al. Morphology, microstructure, and mechanical properties of laser-welded joints in GH909 alloy [J]. J. Mech. Sci. Technol., 2017, 31: 2497
doi: 10.1007/s12206-017-0447-z
10 Heck K A, Smith D R, Smith J S, et al. The physical metallurgy of a silicon-containing low-expansion superalloy [A]. Superalloys 1988—Proceedings of the Sixth International Symposium on Superalloys [C]. Warrendale, PA: Metallurgical Society, Inc., 1988: 151
11 Guo X P, Kusabiraki K, Saji S. Intragranular precipitates in Incoloy alloy 909 [J]. Scr. Mater., 2001, 44: 55
doi: 10.1016/S1359-6462(00)00576-5
12 Li Z, Wang T, Xu X, et al. Structure analysis on stress rupture notch sensitivity for GH2909 alloy forgings [J]. Heat Treat. Met., 2020, 45(5): 17
12 李 钊, 王 涛, 徐 雄 等. GH2909合金锻件持久缺口敏感性组织分析 [J]. 金属热处理, 2020, 45(5): 17
13 Sato K, Ohno T. Development of low thermal expansion superalloy [J]. J. Mater. Eng. Perform., 1993, 2: 511
doi: 10.1007/BF02661734
14 Kusabiraki K, Amada E, Ooka T. Precipitation and growth of γ' phase in an Fe-38Ni-13Co-4.7Nb superalloy [J]. ISIJ Int., 1996, 36: 208
doi: 10.2355/isijinternational.36.208
15 Chen Z, Brooks J W, Loretto M H. Precipitation in Incoloy alloy 909 [J]. Mater. Sci. Technol., 2013, 9: 647
doi: 10.1179/mst.1993.9.8.647
16 Chen Z. Identification of orthorhombic phase in Incoloy alloy 909 [J]. Scr. Metall. Mater., 1992, 26: 1077
doi: 10.1016/0956-716X(92)90233-5
17 Wang X C. Effect of forging process and heat treatment process on structure and properties of GH2909 alloy [J]. Spec. Steel Technol., 2013, 19(2): 8
17 王信才. 锻造工艺及热处理制度对GH2909合金组织与性能的影响 [J]. 特钢技术, 2013, 19(2): 8
18 Chen Q. Analysis on notch sensitivity of low thermal expansion superalloys GH2909 [J]. Iron Steel Vanad. Titan., 2020, 41(6): 175
18 陈 琦. 低膨胀GH2909合金缺口敏感性问题分析 [J]. 钢铁钒钛, 2020, 41(6): 175
19 Wanner E A, DeAntonio D A, Smith D F, et al. The current status of controlled thermal expansion superalloys [J]. JOM, 1991, 43(3): 38
doi: 10.1007/BF03223147
20 Covarrubias O, Elizarrarás O, Colás R. Effect of heat treatment on mechanical properties of alloy 909 [J]. Mater. Sci. Technol., 2011, 27: 1092
doi: 10.1179/026708310X12677993662005
21 Yan F, Li R Y, Li J M, et al. The effect of aging heat treatment on microstructure and mechanical properties of laser welded joints of alloy GH909 [J]. Mater. Sci. Eng., 2014, A598: 62
22 Cieslak M J, Headley T J, Knorovsky G A, et al. A comparison of the solidification behavior of Incoloy 909 and Inconel 718 [J]. Metall. Trans., 1990, 21A: 479
23 Balachander M A, Vishwakarma K, Tang B, et al. Microstructure characterisation of solution treated (ST) and solution treated and aged (STA) Incoloy 909 [J]. Mater. Sci. Technol., 2011, 27: 805
doi: 10.1179/026708310X12683157551414
24 Heck K A. The effects of silicon and processing on the structure and properties of Incoloy alloy 909 [A]. RussellKC, SmithDF. Physical Metallurgy of Controlled Expansion Invar-Type Alloys [M]. Warrendale, PA: TMS, 1990: 273
25 Tang B, Jiang L, Hu R, et al. Correlation between grain boundary misorientation and M23C6 precipitation behaviors in a wrought Ni-based superalloy [J]. Mater. Charact., 2013, 78: 144
doi: 10.1016/j.matchar.2013.02.006
26 Wang F, Ma D X, Bührig-Polaczek A. Preferred growth orientation and microsegregation behaviors of eutectic in a nickel-based single-crystal superalloy [J]. Sci. Technol. Adv. Mater., 2015, 16: 025004
27 Balachander M A, Vishwakarma K, Richards N L. Overaged metallography of alloy 909, a low coefficient of expansion superalloy [J]. Mater. Sci. Technol., 2012, 28: 380
doi: 10.1179/1743284710Y.0000000015
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[5] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[6] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[7] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[8] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[9] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[10] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[11] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[12] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[13] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[14] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[15] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.