Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 797-803    DOI: 10.11900/0412.1961.2016.00004
  论文 本期目录 | 过刊浏览 |
不锈钢表面FeCoCrAlCuNiMox激光高熵合金化层的相演变*
吴臣亮1,张松1(),张春华1,关锰2,谭俊哲2
1 沈阳工业大学材料科学与工程学院, 沈阳 110870。
2 沈阳鼓风机集团核电泵业有限公司, 沈阳 110869。
PHASE EVOLUTION OF FeCoCrAlCuNiMox COATINGS BY LASER HIGH-ENTROPY ALLOYING ON STAINLESS STEELS
Chenliang WU1,Song ZHANG1(),Chunhua ZHANG1,Meng GUAN2,Junzhe TAN2
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Nuclear Power Pump Industry Co., Ltd., Shenyang Blower Works Group Corporation, Shenyang 110869, China
全文: PDF(780 KB)   HTML
摘要: 

采用激光高熵合金化技术在2Cr13不锈钢表面制备FeCoCrAlCuNiMox (x=0, 0.5, 1, 摩尔分数) 激光高熵合金化层. 利用XRD, SEM, EDS及显微硬度计对FeCoCrAlCuNiMox激光高熵合金化层的相转变机制、微观组织形貌及硬度进行研究. 结果表明, 2Cr13不锈钢基材主元素Fe, Cr在激光辐照条件下参与了表面合金化过程, 形成了FeCoCrAlCuNiMox激光高熵合金化层; 随着Mo含量的增加, 合金化层相结构逐渐由fcc+bcc双相固溶体结构转变为fcc+bcc+hcp三相共存, hcp相主要为Ni3Mo和Co7Mo6, 且Ni3Mo相含量高于Co7Mo6相; 熔池的凝固温度在激光高熵合金化层相选择过程中起到重要作用. 激光高熵合金化层显微组织为典型的枝晶组织; 随着Mo含量的增加, 枝晶内析出块状Ni3Mo和Co7Mo6相. FeCoCrAlCuNiMox激光高熵合金化层的显微硬度在390~490 HV之间, 且Mo含量的增加显著提高高熵合金化层的硬度.

关键词 不锈钢激光高熵合金化相结构硬度    
Abstract

High-entropy alloys (HEAs), defined as solid solution alloys which have at least 5 principal elements but no more than 13 elements, with concentrations of each principal element ranging from 5% to 35% in atomic fraction, are emerging as one of the hot research frontiers in the metallic materials field. The significance of HEAs originates from their various combinations of high strength, good thermal stability and excellent resistance to corrosion, wear and oxidation. HEAs exhibit simple solid solutions with bcc and/or fcc structure(s) due to the effect of high mixing entropy in the solid solution state of HEAs, which may make the HEAs with improved mechanical and physical properties. However, a small quantity of intermetallic compounds can also form in certain HEAs, indicating that the formation of simple solid solutions cannot solely depend on the high mixing entropy. Then, the theory of HEAs based on the concept of entropy-enthalpy competition to judge whether or not simple phases will form was proposed. However, even if an alloy meets these criterions, it can still contain intermetallic phases. Why and how these intermetallics form in HEAs needs much more clarification. In this work, Co-Al-Cu-Ni-Mox (x=0, 0.5, 1) powder system with close-to-equiatomic ratios was mixed and laser surface alloyed onto 2Cr13 stainless steel substrates, and then the FeCoCrAlCuNiMox HEA coatings were obtained by reaction synthesis of Fe, Cr with Co-Al-Cu-Ni-Mox powder. The phase transition mechanism, microstructure and microhardness of FeCoCrAlCuNiMox coatings were investigated by XRD, SEM, EDS and microhardness tester. Experimental results showed that the principal elements of Fe, Cr in 2Cr13 stainless steel substrate participated in surface alloying process during the laser irradiation, forming FeCoCrAlCuNiMox laser high-entropy alloying coatings. With the increase of Mo content, the crystal structures of FeCoCrAlCuNiMox laser high-entropy alloying coatings evolved from fcc+bcc two-phase solid solution to fcc+bcc solid solution with hcp phase precipitations. The hcp phases were mainly Ni3Mo and Co7Mo6, and the content of Ni3Mo phase was higher than that of Co7Mo6. The phase formation analysis indicated that besides Ω and δ parameters, solidification temperature of the molten pool must be considered during the phase selection, instead of melting point as suggested previously. The microstructure of the coatings exhibited a typical dendrite structure. With the increase of Mo content, the block-shaped Ni3Mo and Co7Mo6 precipitated in the innerdendritic regions. The microhardness of the FeCoCrAlCuNiMox laser high-entropy alloying coatings was 390~490 HV, which significantly increased with the increase of Mo content.

Key wordsstainless steel    laser high-entropy alloying    phase constituent    microhardness
收稿日期: 2016-01-02      出版日期: 2016-05-03
基金资助:* 国家自然科学基金项目51271126和沈阳市科技计划项目F16-032-0-00资助

引用本文:

吴臣亮,张松,张春华,关锰,谭俊哲. 不锈钢表面FeCoCrAlCuNiMox激光高熵合金化层的相演变*[J]. 金属学报, 2016, 52(7): 797-803.
Chenliang WU,Song ZHANG,Chunhua ZHANG,Meng GUAN,Junzhe TAN. PHASE EVOLUTION OF FeCoCrAlCuNiMox COATINGS BY LASER HIGH-ENTROPY ALLOYING ON STAINLESS STEELS. Acta Metall Sin, 2016, 52(7): 797-803.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00004      或      http://www.ams.org.cn/CN/Y2016/V52/I7/797

图1  FeCoCrAlCuNiMox (x=0, 0.5, 1)激光高熵合金化层XRD谱
图2  FeCoCrAlCuNiMox激光高熵合金化层在衍射角2θ=40°~47°局部XRD谱
x Ω δ / % e/a ΔHmix / (Jmol-1) ΔSmix / (JK-1mol-1)
0 5.075 4.983 7.849 -4797 14.909
0.5 6.784 4.980 7.700 -4079 16.013
1 8.336 4.950 7.579 -3517 16.186
表1  FeCoCrAlCuNiMox激光高熵合金化层合金系参数
图3  FeCoCrAlCuNiMox激光高熵合金化层宏观形貌
图4  FeCoCrAlCuNiMox激光高熵合金化层横截面SEM像
图5  FeCoCrAlCuNiMox激光高熵合金化层及基材的硬度
x Region Fe Co Cr Al Cu Ni Mo
0 A 22.34 17.06 6.87 20.89 11.79 21.06 -
B 22.10 14.66 4.01 17.38 22.37 19.48 -
0.5 A 24.21 19.44 4.34 11.53 10.87 22.83 6.78
B 21.87 13.86 5.56 15.43 20.87 17.56 4.85
1 A 18.91 15.83 6.74 10.48 12.83 18.37 16.84
B 21.08 14.79 5.97 8.46 18.96 17.45 13.29
C 4.82 19.32 2.54 1.13 0.87 56.45 14.87
表2  FeCoCrAlCuNiMox (x=0, 0.5, 1) 激光高熵合金化层微区EDS分析结果
[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Tsau S Y.Adv Eng Mater, 2004; 6: 299
[2] Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J.Mater Chem Phys, 2007; 103: 41
[3] Shon Y, Joshi S S, Katakam S, Rajamure R S, Dahotre N B.Mater Lett, 2015; 142: 122
[4] Zhang K B, Fu Z Y.Intermetallics, 2012; 22: 24
[5] Dong Y, Jiang L, Jiang H, Lu Y P, Wang T M, Li T J.Mater Des, 2015; 82: 91
[6] Hsu C Y, Sheu T S, Yeh J W, Chen S K.Wear, 2010; 268: 653
[7] Qiu X W, Liu C G.J Alloys Compd, 2013; 553: 216
[8] Zhang S, Wu C L, Zhang C H.Mater Lett, 2015; 141: 7
[9] Chen M, Liu Y, Li Y X, Chen X.Acta Metall Sin, 2007; 43: 1020
[9] (陈敏, 刘源, 李言祥, 陈祥. 金属学报, 2007; 43: 1020)
[10] Wang W R, Wang W L, Wang S C, Tsai Y C, Lai C H, Yeh J W.Intermetallics, 2012; 26: 44
[11] Wang F J, Zhang Y.Mater Sci Eng, 2008; A496: 214
[12] Tung C C, Yeh J W, Shun T T, Chen S K, Huang Y S, Chen H C.Mater Lett, 2007; 61: 1
[13] Zhang H, Pan Y, He Y Z.Mater Des, 2011; 32: 1910
[14] Qiu X W, Zhang Y P, He L, Liu C G.J Alloys Compd, 2013; 549: 195
[15] Zhang H, Pan Y, He Y Z, Jiao H S.Appl Surf Sci, 2011; 257: 2259
[16] Kunce I, Polanski M, Karczewski K, Plocinski T, Kurzydlowski K J.J Alloys Compd, 2015; 648: 751
[17] Zhang H, Pan Y, He Y Z.Acta Metall Sin, 2011; 47: 1075
[17] (张晖, 潘冶, 何宜柱. 金属学报, 2011; 47: 1075)
[18] Zhang S, Wu C L, Yi J Z, Zhang C H.Surf Coat Technol, 2015; 262: 64
[19] Zhang S, Wu C L, Wang C, Yi J Z, Zhang C H.Acta Metall Sin, 2014; 50: 555
[19] (张松, 吴臣亮, 王超, 伊俊振, 张春华. 金属学报, 2014; 50: 555)
[20] Tong C J, Chen M R, Chen S K, Yeh J W, Shun T T, Lin S J, Chang S Y.Metall Mater Trans, 2005; 36A: 1263
[21] Zhu J M, Zhang H F, Fu H M, Wang A M, Li H, Hu Z Q.J Alloys Compd, 2010; 497: 52
[22] Man H C, Zhang S, Cheng F T, Yue T M.Scr Mater, 2002; 46: 229
[23] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Zhao P L.Prog Mater Sci, 2014; 61: 1
[24] Cheng J B, Liang X B, Xu B S.Surf Coat Technol, 2014; 240: 184
[25] Lin Y C, Cho Y H.Surf Coat Technol, 2009; 203: 1694
[26] Yang X, Zhang Y.Mater Chem Phys, 2012; 132: 233
[27] Guo S, Liu C T.Prog Nat Sci, 2011; 21: 433
[28] Swalin R A.Thermodynamics of Solid. 2nd Ed, New York: Wiley, 1991: 21
[29] Takeuchi A, Inoue A. Mater Trans, 2005; 46: 2817
[30] Chen S T, Tang W Y, Kuo Y F, Chen S Y, Tsau C H, Shun T T, Yeh J W.Mater Sci Eng, 2010; A527: 5818
[1] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[2] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[3] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[4] 林晓冬,彭群家,韩恩厚,柯伟. 退火对热老化308L不锈钢焊材显微结构的影响[J]. 金属学报, 2019, 55(5): 555-565.
[5] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[6] 邓亚辉, 杨银辉, 曹建春, 钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[7] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[8] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[9] 李丹, 李杨, 陈荣生, 倪红卫. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186.
[10] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
[11] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[12] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[13] 杨柯, 牛梦超, 田家龙, 王威. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585.
[14] 胡国栋, 王培, 李殿中, 李依依. 新型25Cr-20Ni奥氏体耐热不锈钢750 ℃持久实验过程中析出相演变[J]. 金属学报, 2018, 54(11): 1705-1714.
[15] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.