|
|
快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能 |
梁琛, 王小娟, 王海鹏( ) |
西北工业大学 物理科学与技术学院 西安 710072 |
|
Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy |
LIANG Chen, WANG Xiaojuan, WANG Haipeng( ) |
School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
Chen LIANG,
Xiaojuan WANG,
Haipeng WANG.
Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. Acta Metall Sin, 2022, 58(9): 1169-1178.
1 |
Gong S K, Shang Y, Zhang J, et al. Application and research of typical intermetallics-based high temperature structural materials in China [J]. Acta Metall. Sin., 2019, 55: 1067
|
1 |
宫声凯, 尚 勇, 张 继 等. 我国典型金属间化合物基高温结构材料的研究进展与应用 [J]. 金属学报, 2019, 55: 1067
|
2 |
Kesler M S, Goyel S, Ebrahimi F, et al. Effect of microstructural parameters on the mechanical behavior of TiAlNb(Cr,Mo) alloys with γ + σ microstructure at ambient temperature [J]. J. Alloys Compd., 2017, 695: 2672
doi: 10.1016/j.jallcom.2016.11.181
|
3 |
Liang C, Wang H P. Peritectic solidification kinetics and mechanical property enhancement in a rapidly solidified Ti-48 at% Al-8 at% Nb alloy via hierarchical twin microstructure [J]. Adv. Eng. Mater., 2021, 23: 2100101
doi: 10.1002/adem.202100101
|
4 |
Zhang H Y, Yan N, Liang H Y, et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review [J]. J. Mater. Sci. Technol., 2021, 80: 203
doi: 10.1016/j.jmst.2020.11.022
|
5 |
Du Z J, Li W Y, Liu J R, et al. Study on the uniformity of structure and mechanical properties of TC4-DT alloy deposited by CMT process [J]. Acta Metall. Sin., 2020, 56: 1667
|
5 |
杜子杰, 李文渊, 刘建荣 等. CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究 [J]. 金属学报, 2020, 56: 1667
|
6 |
Guyon J, Hazotte A, Wagner F, et al. Recrystallization of coherent nanolamellar structures in Ti48Al2Cr2Nb intermetallic alloy [J]. Acta Mater., 2016, 103: 672
doi: 10.1016/j.actamat.2015.10.049
|
7 |
Cha L M, Scheu C, Clemens H, et al. Nanometer-scaled lamellar microstructures in Ti-45Al-7.5Nb-(0; 0.5)C alloys and their influence on hardness [J]. Intermetallics, 2008, 16: 868
doi: 10.1016/j.intermet.2008.03.009
|
8 |
Fang H Z, Chen R R, Chen X Y, et al. Effect of Ta element on microstructure formation and mechanical properties of high-Nb TiAl alloys [J]. Intermetallics, 2019, 104: 43
doi: 10.1016/j.intermet.2018.10.017
|
9 |
Gao P, Wang Z M. Tailored microstructure and enhanced comprehensive mechanical properties of selective laser melted Ti-40Al-9V-0.5Y alloy after aging treatment [J]. Mater. Sci. Eng., 2020, A780: 139183
|
10 |
Dai J C, Min X H, Zhou K S, et al. Coupling effect of pre-strain combined with isothermal ageing on mechanical properties in a multilayered Ti-10Mo-1Fe/3Fe alloy [J]. Acta Metall. Sin., 2021, 57: 767
|
10 |
戴进财, 闵小华, 周克松 等. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能 [J]. 金属学报, 2021, 57: 767
doi: 10.11900/0412.1961.2020.00286
|
11 |
Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications [J]. Nat. Mater., 2016, 15: 876
doi: 10.1038/nmat4677
|
12 |
Zhang W, Ma Z C, Zhao H W, et al. Breakthrough the strength-ductility trade-off in a high-entropy alloy at room temperature via cold rolling and annealing [J]. Mater. Sci. Eng., 2021, A800: 140264
|
13 |
Sakaguchi M, Niwa Y, Gong W X, et al. Temperature dependent fatigue crack growth in forged TiAl alloys with nearly-lamellar and triplex microstructure [J]. Mater. Sci. Eng., 2021, A806: 140802
|
14 |
Guo Y F, Tian J, Xiao S L, et al. Enhanced creep properties of Y2O3-bearing Ti-48Al-2Cr-2Nb alloys [J]. Mater. Sci. Eng., 2021, A809: 140952
|
15 |
Ye J J, He Z R, Zhang K G, et al. Effect of ageing on microsturcture, tensile properties, and shape memory behaviors of Ti-50.8Ni-0.1Zr shape memory alloy [J]. Acta Metall. Sin., 2021, 57: 717
|
15 |
叶俊杰, 贺志荣, 张坤刚 等. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响 [J]. 金属学报, 2021, 57: 717
doi: 10.11900/0412.1961.2020.00276
|
16 |
Wang H P, Lü P, Cai X, et al. Rapid solidification kinetics and mechanical property characteristics of Ni-Zr eutectic alloys processed under electromagnetic levitation state [J]. Mater. Sci. Eng., 2020, A772: 138660
|
17 |
Shuleshova O, Woodcock T G, Lindenkreuz H G, et al. Metastable phase formation in Ti-Al-Nb undercooled melts [J]. Acta Mater., 2007, 55: 681
doi: 10.1016/j.actamat.2006.08.058
|
18 |
Mullis A M, Jegede O E, Bigg T D, et al. Dynamics of core-shell particle formation in drop-tube processed metastable monotectic alloys [J]. Acta Mater., 2020, 188: 591
doi: 10.1016/j.actamat.2020.02.017
|
19 |
Castle E G, Mullis A M, Cochrane R F. Mechanism selection for spontaneous grain refinement in undercooled metallic melts [J]. Acta Mater., 2014, 77: 76
doi: 10.1016/j.actamat.2014.05.043
|
20 |
Löser W, Lindenkreuz H G, Hermann R, et al. Recalescence behaviour of binary Ti-Al and ternary Ti-Al-Nb undercooled melts [J]. Mater. Sci. Eng., 2005, A413-414: 398
|
21 |
Zhou Y H, Li W P, Wang D W, et al. Selective laser melting enabled additive manufacturing of Ti-22Al-25Nb intermetallic: Excellent combination of strength and ductility, and unique microstructural features associated [J]. Acta Mater., 2019, 173: 117
doi: 10.1016/j.actamat.2019.05.008
|
22 |
Yao W J, Niu X L, Zhou L, et al. Competition growth of α and β phases in Ti-50 at.%Al peritectic alloy during the rapid solidification by laser melting technique [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 523
doi: 10.1007/s40195-013-0085-0
|
23 |
Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
|
23 |
杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
|
24 |
Liang C, Zhao J F, Chang J, et al. Microstructure evolution and Nano-hardness modulation of rapidly solidified Ti-Al-Nb alloy [J]. J. Alloys Compd., 2020, 836: 155538
doi: 10.1016/j.jallcom.2020.155538
|
25 |
Schuster J C, Palm M. Reassessment of the binary aluminum-titanium phase diagram [J]. J. Phase Equilib. Diffus., 2006, 27: 255
doi: 10.1361/154770306X109809
|
26 |
Witusiewicz V T, Bondar A A, Hecht U, et al. The Al-B-Nb-Ti system: IV. Experimental study and thermodynamic re-evaluation of the binary Al-Nb and ternary Al-Nb-Ti systems [J]. J. Alloys Compd., 2009, 472: 133
doi: 10.1016/j.jallcom.2008.05.008
|
27 |
Kastenhuber M, Klein T, Rashkova B, et al. Phase transformations in a β-solidifying γ-Tial based alloy during rapid solidification [J]. Intermetallics, 2017, 91: 100
doi: 10.1016/j.intermet.2017.08.017
|
28 |
Li M X, Wang H P, Yan N, et al. Heat transfer of micro-droplet during free fall in drop tube [J]. Sci. China Technol. Sci., 2018, 61: 1021
doi: 10.1007/s11431-018-9240-x
|
29 |
Lee E S, Ahn S. Solidification progress and heat transfer analysis of gas-atomized alloy droplets during spray forming [J]. Acta Metall. Mater., 1994, 42: 323
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|