Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 804-810    DOI: 10.11900/0412.1961.2015.00518
  论文 本期目录 | 过刊浏览 |
K-PAW准稳态过程小孔与熔池动态行为的数值模拟*
徐斌1(),胡庆贤2,陈树君1,蒋凡1,王晓丽2
1 北京工业大学机械工程与应用电子技术学院汽车结构部件先进制造技术教育部工程研究中心, 北京 100124。
2 江苏科技大学江苏省先进焊接技术重点实验室, 镇江 212003。
NUMERICAL SIMULATION OF DYNAMIC BEHAVIOR OF KEYHOLE AND MOLTEN POOL AT K-PAW QUASI STEADY PROCESS
Bin XU1(),Qingxian HU2,Shujun CHEN1,Fan JIANG1,Xiaoli WANG2
1 Engineering Research Center of Advanced Manufacturing Technology for Automotive Components, Ministry of Education, College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
2 Key Laboratory of Advanced Welding Technology of Jiangsu Province, Jiangsu University of Science and Technology, Zhenjiang 212003, China
引用本文:

徐斌,胡庆贤,陈树君,蒋凡,王晓丽. K-PAW准稳态过程小孔与熔池动态行为的数值模拟*[J]. 金属学报, 2016, 52(7): 804-810.
Bin XU, Qingxian HU, Shujun CHEN, Fan JIANG, Xiaoli WANG. NUMERICAL SIMULATION OF DYNAMIC BEHAVIOR OF KEYHOLE AND MOLTEN POOL AT K-PAW QUASI STEADY PROCESS[J]. Acta Metall Sin, 2016, 52(7): 804-810.

全文: PDF(950 KB)   HTML
摘要: 

基于流体动力学原理, 同时考虑电弧压力、表面张力、电磁收缩力、浮力和重力等因素影响, 建立了随小孔深度增加热力作用二次变化的三维瞬态计算模型. 利用上部双椭球体下部锥体的组合式体积热源描述等离子电弧对焊接工件的热作用, 提出了可以维持小孔稳定的“孔内固体搅动式”计算方法. 为了提高计算效率, 建立了相对焊缝纵截面对称的计算区域; 计算过程利用流体体积函数(VOF)法追踪小孔边界, 基于FLUENT软件对穿孔型等离子弧准稳态焊接过程进行了数值模拟, 得到了准稳态焊接过程中小孔、熔池及流场的动态变化行为, 分析了穿孔型等离子弧焊接(K-PAW)准稳态过程的稳定性, 探讨了影响小孔稳定的工艺因素, 最后进行了计算模型的验证实验. 结果表明, 在设定的焊接工艺参数下, 3.0 s之后焊接过程达到准稳态, 准稳态焊接过程中小孔前壁熔池较薄, 平均厚度为0.6 mm, 且小孔前壁有一定倾斜现象, 使得背面小孔中心相对焊接中心向后偏移, 焊接不同时刻偏移量在0.46~0.97 mm之间波动. 在准稳态焊接过程中熔池内存在稳定的逆时针涡流, 计算所得的背面小孔宽度与实验结果吻合良好.

关键词 K-PAW准稳态过程小孔熔池流场数值模拟    
Abstract

The keyhole plasma arc welding (K-PAW) is widely applied in engineering project now as a high energy beam welding with its advantages of low-cost and easy operation. However, the arc instability may arise and welding defects will be produced in K-PAW due to the high current and strong plasma penetrating force when medium thickness plates are welded, finally weakening the efficiency of K-PAW. Furthermore, it is found that the flow field of liquid metal in the molten pool and the stability of keyhole have a critical influence on welding quality. Therefore, modeling and simulating molten pool, keyhole and flow field in the K-PAW quasi steady process except for arc starting and ending phases are helpful to understand the welding process theory completely and promote its application further. But to date, there is little study on the coupled analysis of molten pool and keyhole in the quasi steady welding process due to the difficulty to make keyhole stable. In this work, based on the principles of fluid dynamics with considering arc pressure, surface tension, electromagnetic force, buoyancy and gravity, a three dimensional transient model is established to reveal the secondary changing of heat and force effect regularly as the keyhole depth increases. To describe the welding heat process, a combined type volumetric heat source model of 'double ellipsoid+conical body' is employed. A keyhole inside solid agitated (KISA) calculated method is proposed to maintain the keyhole stability in the quasi steady welding process. To improve the computational efficiency, the calculated region is limited within the action region of a cone-symmetrical weld heat source. With volume of fluid (VOF) method to track the keyhole boundary, the dynamic behavior process of molten pool, keyhole and flow field are calculated using FLUENT software. The stability of K-PAW is analyzed and the factors affecting keyhole production are discussed. The calculated results show that under the welding current 140 A and plasma gas flow 3.5 L/min, it needs 3.0 s to reach the quasi-steady state in which the average thickness of molten pool in keyhole front wall is 0.6 mm. The offset range of the keyhole center between top side and bottom side is 0.46~0.97 mm. There is the anticlockwise heat vortex appearing in molten pool of back side. The calculated width of keyholes on the bottom side is in good agreement with experimental results.

Key wordsK-PAW quasi steady process    keyhole    molten pool    flow field    numerical simulation
收稿日期: 2015-10-07     
基金资助:*国家自然科学基金资助项目51205176
图1  穿孔型等离子弧焊(K-PAW)准稳态焊接过程示意图
图2  计算域及边界条件
图3  不同时刻K-PAW熔池纵截面的温度场和流场分布
图4  熔池内部流场迹线随焊接时间的变化
图5  不同时刻小孔的三维形貌
图6  焊缝纵截面小孔形貌与局部放大图
图7  不同时刻的小孔偏移量
图8  实验与计算得到在不同焊接时刻的小孔图像
图9  实验所得小孔边界示意图
图10  计算与实验得到的小孔宽度对比图
[1] Jenney C L, O'Brien A. Welding Handbook. 2nd Ed., Miami: American Welding Society, 2001: 303
[2] Wu C S.Thermal Process and Weld Pool Behavior. Beijing: China Machine Press, 2007: 8
[2] (武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2007: 8)
[3] Wu C S, Gao J Q, Liu X F, Zhao Y H.Proc Inst Mech Eng, 2003; 217: 879
[4] Liu Z M.PhD Dissertation, Shandong University, Jinan, 2013
[4] (刘祖名. 山东大学博士学位论文, 济南, 2013)
[5] Liu Z M, Wu C S, Gao J Q.Int J Therm Sci, 2013; 63: 38
[6] Wu C S, Liu Z M, Chen J.J Mech Eng, 2011; 47(6): 45
[6] (武传松, 刘祖名, 陈姬. 机械工程学报, 2011; 47(6): 45)
[7] Hu Q X, Wu C S, Zhang Y M.China Weld, 2007; 16(1): 6
[8] Pei L C. Master Thesis, Harbin Institute of Technology, 2006
[8] (裴利程. 哈尔滨工业大学硕士学位论文, 2006)
[9] Dong H G, Gao H M, Wu L.Trans China Weld Inst, 2002; 23(4): 24
[9] (董红刚, 高洪明, 吴林. 焊接学报, 2002; 23(4): 24)
[10] Hsu Y F, Rubinsky B.Int J Heat Mass Transfer, 1988; 31: 1409
[11] Hu Q X.PhD Dissertation, Shandong University, Jinan, 2007
[11] (胡庆贤. 山东大学博士学位论文, 济南, 2007)
[12] Wang H G, Wu C S, Zhang M X.Trans China Weld Inst, 2005; 26(7): 49
[12] (王怀刚, 武传松, 张明贤. 焊接学报, 2005; 26(7): 49)
[13] Wu C S, Wang H G, Zhang M X.Acta Metall Sin, 2006; 42: 311
[13] (武传松, 王怀刚, 张明贤. 金属学报, 2006; 42: 311)
[14] Wu C S, Hu Q X, Gao J Q.Comput Mater Sci, 2009; 46: 167
[15] Hu Q X, Wu C S, Zhang Y M.China Weld, 2007; 16(2): 55
[16] Huo Y S, Wu C S, Chen M A.Acta Metall Sin, 2011; 47: 706
[16] (霍玉双, 武传松, 陈茂爱. 金属学报, 2011; 47: 706)
[17] Huo Y S, Wu C S.China Weld, 2009; 18(2): 17
[18] Wu C S, Huo Y S.J Manuf Process, 2013; 15: 593
[19] Fan H G, Kovacevic R.J Phys, 1999; 32D: 2902
[20] Li T Q, Wu C S, Feng Y H, Zheng L C.Int J Heat Fluid Flow, 2012; 34: 117
[21] Wang X J, Wu C S, Chen M A.Acta Metall Sin, 2010; 46: 984
[21] (王小杰, 武传松, 陈茂爱. 金属学报, 2010; 46: 984)
[22] Wu C S, Zhang T, Feng Y H.Int J Heat Fluid Flow, 2013; 40: 186
[23] Zhang T, Wu C S, Chen M A.Acta Metall Sin, 2012; 48: 1025
[23] (张涛, 武传松, 陈茂爱. 金属学报, 2012; 48: 1025)
[24] Zhang T, Wu C S.Trans China Weld Inst, 2011; 32(7): 87
[24] (张涛, 武传松. 焊接学报, 2011; 32(7): 87)
[25] Li Y, Feng Y H, Zhang X X, Wu C S.Acta Metall Sin, 2013; 49: 804
[25] (李岩, 冯妍卉, 张欣欣, 武传松. 金属学报, 2013; 49: 804)
[26] Li T Q.PhD Dissertation, Shandong University, Jinan, 2014
[26] (李天庆. 山东大学博士学位论文, 济南, 2014)
[27] Jian X X, Wu C S.Int J Heat Mass Transfer, 2015; 84: 839
[28] Wang H X, Wei Y H, Yang C L.Comput Mater Sci, 2007; 38: 571
[29] Wang H X, Wei Y H, Yang C L.Comput Mater Sci, 2007; 40: 213
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[8] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[9] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[10] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[11] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[12] 唐海燕, 李小松, 张硕, 张家泉. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020, 56(12): 1629-1642.
[13] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[14] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[15] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.