Please wait a minute...
金属学报  2022, Vol. 58 Issue (10): 1334-1348    DOI: 10.11900/0412.1961.2021.00460
  研究论文 本期目录 | 过刊浏览 |
SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发
骆文泽, 胡龙, 邓德安()
重庆大学 材料科学与工程学院 重庆 400045
Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint
LUO Wenze, HU Long, DENG Dean()
College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
引用本文:

骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
Wenze LUO, Long HU, Dean DENG. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. Acta Metall Sin, 2022, 58(10): 1334-1348.

全文: PDF(24907 KB)   HTML
摘要: 

基于MSC. Marc有限元软件平台,针对SUS316马鞍形管-管焊接头的焊接残余应力预测,开发了2种能同时兼顾精度与效率的计算方法。第1种方法建立了与实际接头尺寸一致的全模型,采用移动热源与瞬间热源混合使用的方法,即采用移动热源模拟打底与盖面焊道的热输入,采用瞬间热源模拟填充焊道热输入;第2种方法利用接头几何形状的对称性,建立了1/4局部模型,并采用瞬间热源模拟全部焊道的热输入。由于SUS316加工硬化效应显著,在材料模型中采用各向同性硬化准则来考虑加工硬化,同时采用阶跃式退火模型来模拟材料的退火软化。比较计算结果和实验结果可知,不论是典型位置的焊接热循环还是接头的残余应力分布,数值模拟结果与实验结果均吻合较好。采用全模型既可以得到整个接头的残余应力分布也可以获得始终端位置应力分布特征。局部模型也能准确预测稳定区域应力的大小和分布,并可以大幅节省计算时间和存储空间。

关键词 SUS316不锈钢管-管焊接接头马鞍形焊缝焊接残余应力对称性模型高效计算方法    
Abstract

A thick-walled SUS316 saddle tube-pipe welded joint is used in nuclear power equipment. A very long computing time and huge memory space are needed to simulate welding residual stress when the thermo-elastic-plastic finite element method is used because of the complex shapes, large sizes, and many weld passes of this joint. To solve the computational problem, two efficient and accurate computational approaches were proposed based on MSC. Marc finite element software platform. In the first computational approach, the finite element model of the SUS316 saddle tube-pipe welded joint was established with the same dimensions as the actual joint. Two heat sources were used to balance the computing time and calculation precision. The moving heat-source model was used to simulate the heat input for the backing and cover passes. In contrast, the instantaneous heat-source model was employed to consider the heat input for the other passes. Considering the geometric symmetry, a quarter model was developed in the second computational approach, and the instantaneous heat-source model was used to model the heat input for all passes. In the material model, both work hardening isotropic rule and annealing effect were considered because SUS316 is sensitive to work hardening. The simulation results of the thermal cycle during the welding process and residual stress distribution in and near the fusion zone were compared using the measured data. The results of thermal cycles and the residual stress distributions obtained using two computational approaches matched the experimental measurements. When the first computational approach was used, not only the residual stress distribution in the whole welded joints could be obtained, but also the features of residual stress distribution near the weld start-end location were able to capture. The second computational approach could predict the magnitude and distribution of residual stress in the stable range of the joint and could save computing time and huge memory space. Thus, the second computational approach is useful for practical engineering applications.

Key wordsSUS316 stainless steel    tube-pipe welded joint    saddle weld    welding residual stress    symmetry model    efficient calculation approach
收稿日期: 2021-10-26     
ZTFLH:  TG404  
基金资助:国家自然科学基金项目(51875063)
作者简介: 骆文泽,男,1997年生,硕士生
图1  SUS316台管、母管、管-管接头的照片及特征尺寸示意图
MaterialCSiMnPNiCrMoSFe
SUS3160.081.002.000.04512-1416-182-3< 0.002Bal.
Y316L0.040.331.88< 0.01912.7019.302.26< 0.002Bal.
表1  SUS316母材及Y316L焊材的化学成分 (mass fraction / %)
图2  焊道布置及热电偶位置示意图
Layer numberBead numberWelding speed / (mm·min-1)Heat input / (kJ·cm-1)Arc efficiency
1148.57.20.57
2, 32-5103.4-127.67.1-12.10.7
4-116-28151.5-192.615.7-16.70.7
12-1429-40216.1-216.613.5-13.70.7
15, 1641-51225.5-249.711.8-12.90.7
表2  各焊道焊接速率、热输入及电弧效率
图3  应变片位置俯视图及各截面应变片位置示意图
图4  全尺寸(Model 1)和1/4尺寸(Model 2)有限元网格模型
图5  有限元模型中焊道布置
T / oCσsσ0.01σ0.05σ0.1σ0.3
920216.5295.6398.9441.8500.5
275158.0223.6320.9363.0422.1
550131.5188.2280.7321.3378.9
750105.9147.9207.0226.4248.9
90093.1103.7107.0107.5107.5
100031.831.831.831.831.8
110019.719.719.719.719.7
14002.12.12.12.12.1
15002.12.12.12.12.1
表3  SUS316不锈钢各向同性硬化准则模型参数[24]
图6  焊接温度循环结果和实验结果的比较
图7  残余应力结果坐标系变换(直角坐标转柱坐标)
图8  焊接完成后Model 1与Model 2整体周向残余应力分布云图
图9  Model 1典型截面上的周向残余应力云图
图10  Model 2典型截面上的周向残余应力云图
图11  90°处上(line 1)下(line 2)表面周向残余应力实验值与计算值
图12  180°处上(line 3)下(line 4)表面周向残余应力实验值与计算值
图13  周向残余应力沿中心线分布(90°截面上不同焊层完成后)
图14  焊后Model 1与Model 2整体径向残余应力分布云图
图15  Model 1典型截面上的径向残余应力云图
图16  Model 2典型截面上的径向残余应力云图
图17  90°处上(line 1)下(line 2)表面径向残余应力实验值与计算值
图18  180°处上(line 3)下(line 4)表面径向残余应力实验值与计算值
图19  径向残余应力沿中心线分布(90°截面上不同焊层完成后)
图20  SUS316不锈钢空间Von Mises屈服面与平面Von Mises屈服面及其扩大示意图
图21  Model 1模型90°截面等效Von Mises应力
1 Ming H L, Zhang Z M, Wang J Q, et al. Microstructure and local properties of a domestic safe-end dissimilar metal weld joint by using hot-wire GTAW [J]. Acta Metall. Sin., 2017, 53: 57
1 明洪亮, 张志明, 王俭秋 等. 国产核电安全端异种金属焊接件的微观结构及局部性能研究 [J]. 金属学报, 2017, 53: 57
2 Unnikrishnan R, Idury K S N, Ismail T P, et al. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments [J]. Mater. Charact., 2014, 93: 10
doi: 10.1016/j.matchar.2014.03.013
3 Ogawa K, Deng D A, Kiyoshima S, et al. Investigations on welding residual stresses in penetration nozzles by means of 3D thermal elastic plastic FEM and experiment [J]. Comput. Mater. Sci., 2009, 45: 1031
doi: 10.1016/j.commatsci.2009.01.008
4 Deng D A, Murakawa H, Liang W. Prediction of welding distortion in a curved plate structure by means of elastic finite element method [J]. J. Mater. Process. Technol., 2008; 203: 252
doi: 10.1016/j.jmatprotec.2007.10.009
5 Shen B W, Li X Y, Wang H D, et al. Effects of constraints on residual stress of austenitic stainless steel welded joint [J]. Hot Work. Technol., 2018, 47(1): 70
5 申博文, 李晓延, 王海东 等. 约束条件对奥氏体不锈钢对接接头残余应力的影响 [J]. 热加工工艺, 2018, 47(1): 70
6 Ueda Y, Yamakawa T. Analysis of thermal elastic-plastic stress and strain during welding by finite element method [J]. Jpn. Weld. Soc. Trans., 1971, 2(2): 186
7 Kumar P, Kumar R, Arif A, et al. Investigation of numerical Modelling of TIG welding of austenitic stainless steel (304L) [J]. Mater. Today Proc., 2020, 27: 1636
8 Deng D A, Ren S D, Li S, et al. Influence of multi-thermal cycle and constraint condition on residual stress in P92 steel weldment [J]. Acta Metall. Sin., 2017, 53: 1532
8 邓德安, 任森栋, 李 索 等. 多重热循环和约束条件对P92钢焊接残余应力的影响 [J]. 金属学报, 2017, 53: 1532
9 Xiong Q R, Smith M C, Muransky O, et al. Validated prediction of weld residual stresses in austenitic steel pipe girth welds before and after thermal ageing, part 2: Modelling and validation [J]. Int. J. Pres. Ves. Pip., 2019, 172: 430
doi: 10.1016/j.ijpvp.2019.02.002
10 Dai P Y, Hu X, Lu S J, et al. Influence of size factor on calculation accuracy of welding residual stress of stainless steel pipe by 2D axisymmetric model [J]. Acta Metall. Sin., 2019, 55: 1058
10 戴培元, 胡 兴, 逯世杰 等. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响 [J]. 金属学报, 2019, 55: 1058
doi: 10.11900/0412.1961.2018.00567
11 Pu X W, Zhang C H, Li S, et al. Simulating welding residual stress and deformation in a multi-pass butt-welded joint considering balance between computing time and prediction accuracy [J]. Int. J. Adv. Manuf. Technol., 2017, 93: 2215
doi: 10.1007/s00170-017-0691-5
12 Hu X, Dai P Y, Zhang C H, et al. Influence of lumped-pass method on calculation accuracy and efficiency of welding residual stress in SUS304 stainless steel butt joints [J]. J. Mech. Eng., 2019, 55(12): 72
doi: 10.3901/JME.2019.12.072
12 胡 兴, 戴培元, 张超华 等. 合并焊道法对SUS304不锈钢平板对接接头焊接残余应力计算精度和效率的影响 [J]. 机械工程学报, 2019, 55(12): 72
13 Zhang M, Chen L Y, Li J H, et al. Influence of welding procedure on the residual stress of the welded thick-wall nuclear pressure vessel [J]. Ordnance Mater. Sci. Eng., 2011, 34(2): 16
13 张 敏, 陈陆阳, 李继红 等. 焊接工艺对厚壁核压力容器焊接残余应力的影响 [J]. 兵器材料科学与工程, 2011, 34(2): 16
14 Katsuyama J, Masaki K, Onizawa K. Study on weld residual stress and crack propagation evaluations for a saddle-shaped weld joint [A]. Proceeding of the ASME 2013 Pressure Vessels and Piping Conference [C]. Paris, France: ASME, 2013, 6B : PV P2013-97838
15 Ruud C O. Residual stress measurements [A]. ASM Handbook, Vol. 8: Mechanical Testing and Evaluation [M]. Ohio: ASM International, 2000: 886
16 Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources [J]. Metall. Trans., 1984, 15B: 299
17 Deng D A, Kiyoshima S. Numerical simulation of welding residual stresses in a multi-pass butt-welded joint of austenitic stainless steel using variable length heat source [J]. Acta Metall. Sin., 2010, 46: 195
doi: 10.3724/SP.J.1037.2009.00521
17 邓德安, 清岛祥一. 用可变长度热源模拟奥氏体不锈钢多层焊对接接头的焊接残余应力 [J]. 金属学报, 2010, 46: 195
doi: 10.3724/SP.J.1037.2009.00521
18 Terasaki T, Kitamura T, Akiyama T, et al. Applicable conditions of instantaneous source used for welding heat conduction [J]. Sci. Technol. Weld. Join., 2005, 10: 701
doi: 10.1179/174329305X65032
19 Sun J M, Deng D A, Ye Y H, et al. Numerical simulation of welding residual stress in multi-pass T-joint of thick Q390 high strength steel plate using instantaneous heat source [J]. Trans. China Weld. Inst., 2016, 37(7): 31
19 孙加民, 邓德安, 叶延洪 等. 用瞬间热源模拟Q390高强钢厚板多层多道焊T形接头的焊接残余应力 [J]. 焊接学报, 2016, 37(7): 31
20 Kiyoshima S, Deng D A, Ogawa K, et al. Influences of heat source model on welding residual stress and distortion in a multi-pass J-groove joint [J]. Comput. Mater. Sci., 2009: 46: 987
doi: 10.1016/j.commatsci.2009.05.002
21 Zhang C H, Wang X X, Chang M C, et al. Effects of yield strength of weld metal and material strain hardening on prediction accuracy of welding residual stress and deformation in a Q345 steel joint [J]. J. Mech. Eng., 2021, 57(10): 160
doi: 10.3901/JME.2021.10.160
21 张超华, 王晓霞, 常茂椿 等. 焊缝金属的屈服强度和材料的加工硬化对Q345钢焊接残余应力与变形计算精度的影响 [J]. 机械工程学报, 2021, 57(10): 160
doi: 10.3901/JME.2021.10.160
22 Feng G J, Wang Y F, Luo W Z, et al. Comparison of welding residual stress and deformation induced by local vacuum electron beam welding and metal active gas arc welding in a stainless steel thick-plate joint [J]. J. Mater. Res. Technol., 2021, 13: 1967
doi: 10.1016/j.jmrt.2021.05.105
23 Deng D A, Kiyoshima S. Influence of annealing temperature on calculation accuracy of welding residual stress in a SUS304 stainless steel joint [J]. Acta Metall. Sin., 2014, 50: 626
doi: 10.3724/SP.J.1037.2013.00565
23 邓德安, Kiyoshima S. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响 [J]. 金属学报, 2014, 50: 626
doi: 10.3724/SP.J.1037.2013.00565
24 Muránsky O, Hamelin C J, Smith M C, et al. The effect of plasticity theory on predicted residual stress fields in numerical weld analyses [J]. Comput. Mater. Sci., 2012, 54: 125
doi: 10.1016/j.commatsci.2011.10.026
25 Li S, Chen W Q, Hu L, et al. Influence of strain hardening and annealing effect on the prediction of welding residual stresses in a thick-wall 316 stainless steel butt-welded pipe joint [J]. Acta Metall. Sin., 2021, 57: 1653
doi: 10.11900/0412.1961.2020.00534
25 李 索, 陈维奇, 胡 龙 等. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响 [J]. 金属学报, 2021, 57: 1653
26 Dong P. On the mechanics of residual stresses in girth welds [J]. J. Pressure Vessel Technol., 2007, 129: 345
doi: 10.1115/1.2748817
27 Khan A S, Huang S. Continuum Theory of Plasticity [M]. New York: John Wiley & Sons, 1995: 256
[1] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[2] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[3] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[4] 邓德安 清岛祥一. 用可变长度热源模拟奥氏体不锈钢多层焊对接接头的焊接残余应力[J]. 金属学报, 2010, 46(2): 195-200.
[5] 张国栋; 周昌玉 . 焊接接头残余应力及蠕变损伤的有限元模拟[J]. 金属学报, 2008, 44(7): 848-852 .
[6] 张国栋; 周昌玉; 薛吉林 . 内压与焊接残余应力共同作用下高温管道蠕变有限元分析[J]. 金属学报, 2008, 44(10): 1271-1276 .
[7] 蒋文春; 巩建鸣; 唐建群; 陈虎; 涂善东 . 焊接残余应力对氢扩散影响的有限元模拟[J]. 金属学报, 2006, 42(11): 1221-1226 .