Please wait a minute...
金属学报  2023, Vol. 59 Issue (10): 1355-1364    DOI: 10.11900/0412.1961.2021.00437
  研究论文 本期目录 | 过刊浏览 |
前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响
王海峰1,2, 张志明1, 牛云松2(), 杨延格2(), 董志宏2, 朱圣龙2, 于良民1, 王福会3
1.中国海洋大学 深海圈层与地球系统前沿科学中心和海洋化学理论与 工程技术教育部重点实验室 青岛 266100
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3.东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding
WANG Haifeng1,2, ZHANG Zhiming1, NIU Yunsong2(), YANG Yange2(), DONG Zhihong2, ZHU Shenglong2, YU Liangmin1, WANG Fuhui3
1.Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
引用本文:

王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
Haifeng WANG, Zhiming ZHANG, Yunsong NIU, Yange YANG, Zhihong DONG, Shenglong ZHU, Liangmin YU, Fuhui WANG. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. Acta Metall Sin, 2023, 59(10): 1355-1364.

全文: PDF(3544 KB)   HTML
摘要: 

针对钛合金硬度低、耐磨性差的缺点,提出了一种由渗氧和氧氮共渗两个过程组成的低温等离子复合渗工艺,并着重研究了前置渗氧对钛合金表面微观结构、物相组成及耐磨性能的影响。利用SEM、TEM、XRD等手段对复合渗层的微观结构和相组成进行了分析,结果表明,等离子复合渗处理的钛合金样品渗层主要由化合物层和扩散层组成,物相为金红石型TiO2和氮化物TiN0.26。采用显微硬度计、纳米压痕仪和往复式摩擦试验机对渗层的显微硬度和摩擦磨损性能进行了表征,结果表明,与传统等离子渗氮相比,等离子复合渗处理可增加渗层的厚度,显著提高钛合金的硬度和弹性模量,大幅改善钛合金的耐磨损性能。

关键词 钛合金等离子渗氮硬度等离子渗氧耐磨    
Abstract

Titanium alloys are used in the aerospace industries, chemical industries, biomedicine, marine ships and other fields because of their high strength-to-weight ratio, good corrosion resistance, and biocompatibility. However, titanium alloys have low hardness and poor wear resistance, which limit their applications, especially under sliding contact. Plasma nitriding (PN) is an effective method for improving titanium alloy's tribological properties. PN can produce a composite layer composed of TiN and Ti2N to improve the friction and wear properties of titanium alloy. However, the high temperature in the nitriding treatment results in a brittle “α-stabilized layer” (a continuous layer of α phase titanium enriched with interstitial nitrogen atoms) and unfavorable phase transformations in the substrate that can impair the fracture toughness, ductility, and fatigue properties. In this study, a low-temperature plasma-composite treatment, consisting of plasma oxidizing and oxynitriding, has been developed to improve the hardness and wear resistance of Ti-6Al-4V alloy. The effect of the preoxidation process on the surface microstructure, phase composition, and wear performance of titanium alloy was studied. The microstructure and phase composition of the plasma-composite layer were observed using SEM, TEM, XRD, and other methods. The results showed that the composite layer of titanium alloy treated using plasma-composite-treatment is composed of compound and diffusion layers, and the phase is TiO2 (rutile) and TiN0.26. Microhardness and wear-resistance properties of the composite layer were characterized using microhardness tester, nanoindentation, and reciprocating-friction tester. The plasma-composite treatment can increase infiltration depth of the diffusion layer, surface hardness, elastic modulus, and wear resistance of the titanium alloy more than the traditional nitriding process.

Key wordstitanium alloy    plasma nitriding    hardness    plasma oxidizing    wear resistance
收稿日期: 2021-10-15     
ZTFLH:  TG174.4  
基金资助:国家重点研发计划项目(2019YFC0312100);国家自然科学基金项目(51701223);民机专项项目(MJ-2017-J-99)
通讯作者: 牛云松,ysniu@imr.ac.cn,主要从事金属表面改性方面的研究;
杨延格,ygyang@imr.ac.cn,主要从事金属材料腐蚀与防护的研究
Corresponding author: NIU Yunsong, senior engineer, Tel: (024)23992860, E-mail: ysniu@imr.ac.cn;
YANG Yange, associate professor, Tel: (024)23881473, E-mail: ygyang@imr.ac.cn
作者简介: 王海峰,男,1995年生,硕士
SampleOxygen pressure / PaOxidizing time / hNitrogen pressure / PaNitriding time / hTemperature / oC
PN 3h--403650
PO+PN 3h151252650
PO+PN 4h152252650
表1  3种制备工艺的具体参数
图1  铸锻TC4钛合金的显微组织
图2  不同工艺下渗层的截面形貌
图3  不同工艺下渗层的XRD谱
图4  PO+PN 4h样品的截面显微结构及不同区域的选区电子衍射花样
图5  纳米压痕测试中硬度和弹性模量随深度的变化曲线
SampleH / GPaE / GPaH / EH 3 / E2
Untreated TC44.57127.50.0365.87 × 10-3
PN 3h5.60132.60.0421.0 × 10-2
Matrix (PN 3h)4.77116.60.0417.98 × 10-3
PO+PN 3h8.54149.10.0572.8 × 10-2
Matrix (PO+PN 3h)4.92115.40.0438.94 × 10-3
PO+PN 4h11.22208.30.0543.25 × 10-2
Matrix (PO+PN 4h)4.73120.70.0397.25 × 10-3
表2  钛合金基体和热处理样品的相关力学性能
图6  不同等离子热处理工艺下渗层的显微硬度分布
图7  不同等离子热处理工艺下渗层的摩擦系数-时间曲线
图8  不同工艺下渗层和对应磨球的磨损率
图9  不同工艺下渗层磨痕的三维形貌及截面轮廓图
图10  不同工艺渗层的磨痕形貌
图11  图10a~c中部分区域的放大图以及EDS分析
图12  摩擦实验后不同工艺样品对应的磨球表面形貌
图13  2种不同渗层的磨损机理示意图
1 Zhu Z S, Shang G Q, Wang X N, et al. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications [J]. J. Aeronaut. Mater., 2020, 40(3): 1
1 朱知寿, 商国强, 王新南 等. 航空用钛合金显微组织控制和力学性能关系 [J]. 航空材料学报, 2020, 40(3): 1
2 Chen J, Yan F Y, Wang J Z. Corrosion wear properties of TC4 titanium alloy in artificial seawater [J]. Tribology, 2012, 32(1): 1
2 陈 君, 阎逢元, 王建章. 海水环境下TC4钛合金腐蚀磨损性能的研究 [J]. 摩擦学学报, 2012, 32(1): 1
3 Wang M F, Lu X, Hou W L. Investigation on fatigue characteristics of TC4 titanium alloy tibia plate [J]. Agric. Equip. Veh. Eng., 2018, 56(3): 28
3 王孟飞, 卢 曦, 侯文亮. TC4钛合金胫骨板的疲劳特性研究 [J]. 农业装备与车辆工程, 2018, 56(3): 28
4 Ali M M, Raman S G S, Pathak S D, et al. Influence of plasma nitriding on fretting wear behaviour of Ti-6Al-4V [J]. Tribol. Int., 2010, 43: 152
doi: 10.1016/j.triboint.2009.05.020
5 Shen H Y, Wang L. Formation, tribological and corrosion properties of thicker Ti-N layer produced by plasma nitriding of titanium in a N2-NH3 mixture gas [J]. Surf. Coat. Technol., 2020, 393: 125846
doi: 10.1016/j.surfcoat.2020.125846
6 Nolan D, Huang S W, Leskovsek V, et al. Sliding wear of titanium nitride thin films deposited on Ti-6Al-4V alloy by PVD and plasma nitriding processes [J]. Surf. Coat. Technol., 2006, 200: 5698
doi: 10.1016/j.surfcoat.2005.08.110
7 Kang J J, Wang M Z, Yue W, et al. Tribological behavior of titanium alloy treated by nitriding and surface texturing composite technology [J]. Materials, 2019, 12: 301
doi: 10.3390/ma12020301
8 Borisyuk Y V, Oreshnikova N M, Berdnikova M A, et al. Plasma nitriding of titanium alloy Ti5Al4V2Mo [J]. Phys. Procedia, 2015, 71: 105
doi: 10.1016/j.phpro.2015.08.322
9 Marin E, Offoiach R, Regis M, et al. Diffusive thermal treatments combined with PVD coatings for tribological protection of titanium alloys [J]. Mater. Des., 2016, 89: 314
doi: 10.1016/j.matdes.2015.10.011
10 Raveh A, Hansen P L, Avni R, et al. Microstructure and composition of plasma-nitrided Ti-6Al-4V layers [J]. Surf. Coat. Technol., 1989, 38: 339
doi: 10.1016/0257-8972(89)90095-9
11 Grill A, Raveh A, Avni R. Layer structure and mechanical properties of low pressure r.f. plasma nitrided Ti-6Al-4V alloy [J]. Surf. Coat. Technol., 1990, 43-44: 745
doi: 10.1016/0257-8972(90)90017-7
12 Farokhzadeh K, Edrisy A. Fatigue improvement in low temperature plasma nitrided Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2015, A620: 435
13 Balasubramanian K, Bragadeesvaran S R, Adarsh S A, et al. Surface properties of Ti-6Al-4V alloy treated by plasma ion nitriding process [J]. Mater. Today: Proc., 2021, 45: 957
14 Qian J, Farokhzadeh K, Edrisy A. Ion nitriding of a near-β titanium alloy: Microstructure and mechanical properties [J]. Surf. Coat. Technol., 2014, 258: 134
doi: 10.1016/j.surfcoat.2014.09.044
15 Yildiz F, Yetim A F, Alsaran A, et al. Plasma nitriding behavior of Ti6Al4V orthopedic alloy [J]. Surf. Coat. Technol., 2008, 202: 2471
doi: 10.1016/j.surfcoat.2007.08.004
16 Leyland A, Matthews A. On the significance of the H / E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour [J]. Wear, 2000, 246: 1
doi: 10.1016/S0043-1648(00)00488-9
17 Musil J, Jirout M. Toughness of hard nanostructured ceramic thin films [J]. Surf. Coat. Technol., 2007, 201: 5148
doi: 10.1016/j.surfcoat.2006.07.020
18 Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
doi: 10.1016/j.actamat.2012.10.043
19 Issariyapat A, Visuttipitukul P, Song T T, et al. Tensile properties improvement by homogenized nitrogen solid solution strengthening of commercially pure titanium through powder metallurgy process [J]. Mater. Charact., 2020, 170: 110700
doi: 10.1016/j.matchar.2020.110700
20 Zheng C L, Xu Z, Xie X S, et al. Study on plasma oxygen permeation of titanium [J]. J. Univ. Sci. Technol. Beijing, 2002, 24: 44
20 郑传林, 徐 重, 谢锡善 等. 钛等离子渗氧研究 [J]. 工程科学学报, 2002, 24: 44
21 Yetim A F, Yildiz F, Vangolu Y, et al. Several plasma diffusion processes for improving wear properties of Ti6Al4V alloy [J]. Wear, 2009, 267: 2179
doi: 10.1016/j.wear.2009.04.005
22 Yang S S, Yang F, Chen M H, et al. Effect of nitrogen doping on microstructure and wear resistance of tantalum coatings deposited by direct current magnetron sputtering [J]. Acta Metall. Sin., 2019, 55: 308
22 杨莎莎, 杨 峰, 陈明辉 等. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响 [J]. 金属学报, 2019, 55: 308
23 Rastkar A R, Shokri B. A multi-step process of oxygen diffusion to improve the wear performance of a gamma-based titanium aluminide [J]. Wear, 2008, 264: 973
doi: 10.1016/j.wear.2007.07.001
24 Wei N A, Wei C B, Dai M J, et al. Effect of rare earth content on the microstructure and friction properties of Ti6Al4V alloy by plasma nitriding [J]. Surf. Technol., 2020, 49(3): 148
24 韦乃安, 韦春贝, 代明江 等. 稀土含量对Ti6Al4V钛合金等离子渗氮层组织和摩擦学性能的影响 [J]. 表面技术, 2020, 49(3): 148
25 Rastkar A R, Bell T. Characterization and tribological performance of oxide layers on a gamma based titanium aluminide [J]. Wear, 2005, 258: 1616
doi: 10.1016/j.wear.2004.11.014
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[3] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[4] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[6] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[7] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[8] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[9] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[10] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[11] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[12] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[13] 张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
[14] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[15] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.