Please wait a minute...
金属学报  2022, Vol. 58 Issue (2): 184-192    DOI: 10.11900/0412.1961.2021.00099
  研究论文 本期目录 | 过刊浏览 |
超高压烧结制备14Cr-ODS钢及微观组织与力学性能
王韬1, 龙弟均2, 余黎明1(), 刘永长1, 李会军1, 王祖敏1
1.天津大学 材料科学与工程学院 水利工程仿真与安全国家重点实验室 天津 300354
2.中国核动力研究设计院 成都 610041
Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering
WANG Tao1, LONG Dijun2, YU Liming1(), LIU Yongchang1, LI Huijun1, WANG Zumin1
1.State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
2.Nuclear Power Institute of China, Chengdu 610041, China
引用本文:

王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
Tao WANG, Dijun LONG, Liming YU, Yongchang LIU, Huijun LI, Zumin WANG. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. Acta Metall Sin, 2022, 58(2): 184-192.

全文: PDF(3154 KB)   HTML
摘要: 

采用吉帕级超高压烧结粉末冶金方法制备了14Cr-ODS钢,通过致密度、SEM、TEM、硬度以及拉伸实验等方法研究了高压烧结工艺对ODS钢微观组织及力学性能的影响。研究表明,通过高压烧结可获得主要析出相为Ti2O3、晶粒均匀、平均晶粒尺寸小于300 nm的细晶14Cr-ODS钢,其Vickers硬度可达604 HV,抗拉强度接近1.5 GPa,显著优于常规烧结方法制备的相近成分ODS钢的性能。得益于超高压力产生塑性变形对晶粒形核和原子扩散的综合影响,超高压烧结可在较低烧结温度和较短烧结时间的工艺下,获得致密度超过99%的力学性能优异的ODS钢试样。

关键词 超高压烧结14Cr-ODS钢细小晶粒高硬度高强度    
Abstract

Due to its superior mechanical, processing, and service properties, oxide dispersion-strengthened (ODS) alloy (particularly Fe base ODS steel) has emerged as the most promising future candidate for advanced reactor structural materials. However, there are some problems with hot isostatic pressing sintering ODS steels, such as higher sintering temperature, longer sintering time, and relatively coarse grains. In this work, 14Cr-ODS steels were prepared by ultra-high pressure sintering with a sintering pressure of 3, 4, and 5 GPa, respectively. The microstructure and mechanical properties of the ultra-high pressure sintered 14Cr-ODS steel samples were characterized by density test, SEM, TEM, hardness test, and tensile test. Based on the contrast analysis of microstructure and mechanical properties, the effect of sintering pressure on the microstructure and mechanical properties of ultra-high pressure sintered 14Cr-ODS steel was investigated, and the effect mechanism was thoroughly analyzed. Analysis results show that the main oxide precipitate of ultra-high pressure sintered 14Cr-ODS steel is Ti2O3, and the average grain size of 14Cr-ODS steel prepared by ultra-high pressure sintering is less than 300 nm, which is approximately 5% of the average grain size of 14Cr-ODS steel prepared by conventional hot isostatic pressing sintering. The average grain size of samples prepared by ultra-high pressure sintering decreased initially and then increased as sintering pressure increased. The Vickers hardness of ODS steel samples sintered at 4 GPa can reach 604 HV, and the tensile strength is approximately 1.5 GPa, which is 1.6 times than that of 14Cr-ODS steel samples with a similar composition prepared by conventional hot isostatic pressing sintering. Ultra-high pressure sintered 14Cr-ODS steel with good sintering formability and a density greater than 99% can be obtained at lower sintering temperatures and shorter sintering times. Its excellent performance can be mainly associated with the comprehensive influence of the plastic deformation effect produced by ultra-high pressure sintering on grain nucleation and atom diffusion in sintered samples.

Key wordsultra-high pressure sintering    14Cr-ODS steel    fine grain    high hardness    high strength
收稿日期: 2021-03-03     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划项目(2017YFB0701801);国家自然科学基金项目(51974199)
作者简介: 王 韬,男,1996年生,硕士生
图1  机械合金化粉末的SEM像及其粒径分布
图2  烧结压力为3、4和5 GPa的超高压烧结14Cr-ODS试样的SEM像及其晶粒尺寸分布
图3  烧结压力为3、4和5 GPa的超高压烧结14Cr-ODS试样微观组织的TEM像
图4  烧结压力为4 GPa的超高压烧结14Cr-ODS试样析出颗粒的TEM像、EDS结果以及SAED花样
图5  烧结压力分别为3、4和5 GPa的14Cr-ODS烧结试样的拉伸曲线
图6  烧结压力为3、4和5 GPa的超高压烧结14Cr-ODS试样拉伸断口的SEM像
Initial pair1NN2NN
configuration
Ref. [33]Ref. [34]Ref. [33]Ref. [34]
Ysub + Ysub0.200.2100.02
Ysub + Tisub0.280.320.150.15
Tisub + Tisub0.290.320.150.16
Ysub + Osub-0.33-0.30-0.30-0.28
Tisub + Osub0.820.881.691.73
Oint + Tisub-0.27-0.21-0.55-0.50
Oint + Ysub0.280.33-0.85-0.80
Oint + Osub-1.29-1.210.190.26
Osub + Osub2.032.10--
Oint + Oint0.400.46--
表1  bcc结构Fe中各种可能的成对构型的形成能[33,34] (eV)
Element800oC[35]1150oC[32]
Y2.8 × 10-202.9 × 10-17
Ti2.5 × 10-153.7 × 10-13
O5.7 × 10-131.5 × 10-10
表2  bcc结构Fe中原子的扩散系数[32,35] (m-2·s-1)
1 Yan P Y , Yu L M , Liu Y C , et al . Effects of Hf addition on the thermal stability of 16Cr-ODS steels at elevated aging temperatures [J]. J. Alloys Compd., 2018, 739: 368
2 Dai L , Liu Z , Yu L M , et al . Microstructural characterization of Mg-Al-O rich nanophase strengthened Fe-Cr alloys [J]. Mater. Sci. Eng., 2020, A771: 138664
3 Mukhopadhyay D . Development of low activation oxide-dispersion strengthened ferritic steels for fusion reactors [D]. Ann Arbor: University of Idaho, 1996
4 Hosemann P , Frazer D , Fratoni M , et al . Materials selection for nuclear applications: Challenges and opportunities [J]. Scr. Mater., 2018, 143: 181
5 Odette G R , Alinger M J , Wirth B D . Recent developments in irradiation-resistant steels [J]. Annu. Rev. Mater. Res., 2008, 38: 471
6 Lescoat M L , Ribis J , Gentils A , et al . In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation [J]. J. Nucl. Mater., 2012, 428: 176
7 Shao Y , Yu L M , Liu Y C , et al . Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization [J]. Int. J. Min. Met. Mater., 2019, 26: 597
8 Ren J , Yu L M , Liu Y C , et al . Microstructure evolution and tensile properties of an Al added high-Cr ODS steel during thermal aging at 650℃ [J]. Fusion Eng. Des., 2020, 157: 111700
9 Abe F . Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants [J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
10 Capdevila C , Miller M K , Russell K F , et al . Phase separation in PM 2000TM Fe-base ODS alloy: Experimental study at the atomic level [J]. Mater. Sci. Eng., 2008, A490: 277
11 Kobayashi S , Takasugi T . Mapping of 475℃ embrittlement in ferritic Fe-Cr-Al alloys [J]. Scr. Mater., 2010, 63: 1104
12 Capdevila C , Miller M K , Toda I , et al . Influence of the α-α' phase separation on the tensile properties of Fe-base ODS PM 2000 alloy [J]. Mater. Sci. Eng., 2010, A527: 7931
13 Kim I S , Choi B Y , Kang C Y , et al . Effect of Ti and W on the mechanical properties and microstructure of 12% Cr base mechanical-alloyed nano-sized ODS ferritic alloys [J]. ISIJ Int., 2003, 43: 1640
14 Kim I S , Okuda T , Kang C Y , et al . Effect of oxide species and thermomechanical treatments on the strength properties of mechanically alloyed Fe-17%Cr ferritic ODS materials [J]. Met. Mater., 2000, 6: 513
15 Li Z Y , Lu Z , Xie R , et al . Effects of Y2O3, La2O3 and CeO2 additions on microstructure and mechanical properties of 14Cr-ODS ferrite alloys produced by spark plasma sintering [J]. Fusion Eng. Des., 2017, 121: 159
16 Li S F . Study on oxide strengthened dispersion alloys for generation IV advanced nuclear systems [D]. Beijing: University of Science and Technology Beijing, 2016
16 李少夫 . 用于第四代先进核能系统的氧化物弥散强化合金的研究 [D]. 北京: 北京科技大学, 2016
17 Dadé M , Malaplate J , Garnier J , et al . Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels [J]. Acta Mater., 2017, 127: 165
18 Zhao Q , Ma Z Q , Yu L M , et al . Tailoring the secondary phases and mechanical properties of ODS steel by heat treatment [J]. J. Mater. Sci. Technol., 2019, 35: 1064
19 Gong M Q , Zhou Z J , Hu H L , et al . Effects of aluminum on microstructure and mechanical behavior of 14Cr-ODS steels [J]. J. Nucl. Mater., 2015, 462: 502
20 Peng Y Y , Yu L M , Liu Y C , et al . Effect of ageing treatment at 650oC on microstructure and properties of 9Cr-ODS steel [J]. Acta Metall. Sin., 2020, 56: 1075
20 彭艳艳, 余黎明, 刘永长 等 . 650℃时效对9Cr-ODS钢显微组织和性能的影响 [J]. 金属学报, 2020, 56: 1075
21 Zhao Q , Yu L M , Liu Y C , et al . Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing [J]. Int. J. Min. Met. Mater., 2018, 25: 1156
22 Oksiuta Z , Ozieblo A , Perkowski K , et al . Influence of HIP pressure on tensile properties of a 14Cr ODS ferritic steel [J]. Fusion Eng. Des., 2014, 89: 137
23 Zhao Q , Yu L M , Liu Y C , et al . Microstructure and tensile properties of a 14Cr ODS ferritic steel [J]. Mater. Sci. Eng., 2017, A680: 347
24 Ma F K . Isostatic Pressing Technology [M]. Beijing: Metallurgical Industry Press, 1992: 158
24 马福康 . 等静压技术 [M]. 北京: 冶金工业出版社, 1992: 158
25 Pazos D , Suárez M , Fernández A , et al . Microstructural comparison of oxide dispersion strengthened Fe-14Cr steels produced by HIP and SPS [J]. Fusion Eng. Des., 2019, 146: 2328
26 Zhang Y Z , Li Y G , Han B , et al . Microstructural characteristics of Hadfield steel solidified under high pressure [J]. High Press. Res., 2011, 31: 634
27 Gu T , Xu F Q , Zhao Y H , et al . Effects of high pressure heat treatment on microstructure and mechanical properties of aluminum bronze [J]. Mater. Res. Express, 2019, 6: 096508
28 Du C C , Jin S B , Fang Y , et al . Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance [J]. Nat. Commun., 2018, 9: 5389
29 Porter D A , Easterling K E , translated by Li C H , Yu Y N . Phase Transformations in Metals and Alloys [M]. Beijing: Metallurgical Industry Press, 1981: 286
29 Porter D A, Easterling K E 著, 李长海, 余永宁译. 金属和合金中的相变 [M]. 北京: 冶金工业出版社, 1981: 286
30 Xia L F , Zhang Z X . Diffusion in Metals [M]. Harbin: Harbin Institute of Technology Press, 1989: 74
30 夏立芳, 张振信 . 金属中的扩散 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1989: 74
31 Sakasegawa H , Chaffron L , Legendre F , et al . Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy [J]. J. Nucl. Mater., 2009, 384: 115
32 Seol J B , Haley D , Hoelzer D T , et al . Influences of interstitial and extrusion temperature on grain boundary segregation, Y-Ti-O nanofeatures, and mechanical properties of ferritic steels [J]. Acta Mater., 2018, 153: 71
33 Jiang Y , Smith J R , Odette G R . Formation of Y-Ti-O nanoclusters in nanostructured ferritic alloys: A first-principles study [J]. Phys. Rev., 2009, 79B: 064103
34 Qian Q , Wang Y R , Jiang Y , et al . Nucleation of Y-X-O (X = Al, Ti, or Zr) NCs in nano-structured ferritic alloys: A first principles comparative study [J]. J. Nucl. Mater., 2019, 518: 140
35 Williams C A , Unifantowicz P , Baluc N , et al . The formation and evolution of oxide particles in oxide-dispersion-strengthened ferritic steels during processing [J]. Acta Mater., 2013, 61: 2219
36 Zhang W Q . Phase Transformations in Solid Metals and Alloys [M]. Beijing: National Defense Industry Press, 2016: 70
36 张伟强 . 固态金属及合金中的相变 [M]. 北京: 国防工业出版社, 2016: 70
[1] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[2] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[3] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[4] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[5] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[6] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[7] 胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.
[8] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[9] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[10] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[11] 徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.
[12] 房玉佩, 谢振家, 尚成嘉. 感应回火对1000 MPa级高强度低合金钢碳化物析出行为及韧性的影响[J]. 金属学报, 2014, 50(12): 1413-1420.
[13] 刘文庆,刘庆冬,顾剑锋. 原子探针层析技术(APT)最新进展及应用[J]. 金属学报, 2013, 49(9): 1025-1031.
[14] 张永健,惠卫军,董瀚. 一种低碳Mn-B系超高强度钢板热成形后的氢致延迟断裂行为[J]. 金属学报, 2013, 49(10): 1153-1159.
[15] 王颖,张柯,郭正洪,陈乃录,戎咏华. 残余奥氏体增强低碳Q-P-T钢塑性的新效应[J]. 金属学报, 2012, 48(6): 641-648.