|
|
Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响 |
项兆龙1,2,3, 张林1, XIN Yan3, 安佰灵1,2,3, NIU Rongmei3, LU Jun3, MARDANI Masoud3, HAN Ke3( ), 王恩刚1( ) |
1. 东北大学 材料电磁过程研究教育部重点实验室 沈阳 110819 2. 东北大学 材料科学与工程学院 沈阳 110819 3. National High Magnetic Field Laboratory, Florida State University, Tallahassee 32310, USA |
|
Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy |
XIANG Zhaolong1,2,3, ZHANG Lin1, XIN Yan3, AN Bailing1,2,3, NIU Rongmei3, LU Jun3, MARDANI Masoud3, HAN Ke3( ), WANG Engang1( ) |
1. Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China 2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 3. National High Magnetic Field Laboratory, Florida State University, Tallahassee 32310, USA |
引用本文:
项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
Zhaolong XIANG,
Lin ZHANG,
Yan XIN,
Bailing AN,
Rongmei NIU,
Jun LU,
Masoud MARDANI,
Ke HAN,
Engang WANG.
Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. Acta Metall Sin, 2022, 58(1): 103-113.
1 |
Kaneko H , Homma M , Nakamura K . New ductile permanent magnet of Fe-Cr-Co system [J]. AIP Conf. Proc., 1971, 5: 1088
|
2 |
Rastabi R A , Ghasemi A , Tavoosi M , et al . Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering [J]. J. Magn. Magn. Mater., 2017, 426: 744
|
3 |
Ushakova O A , Dinislamova E H , Gorshenkov M V , et al . Structure and magnetic properties of Fe-Cr-Co nanocrystalline alloys for permanent magnets [J]. J. Alloys Compd., 2014, 586(suppl.1): S291
|
4 |
Kaneko H , Homma M , Minowa T . Effect of V and V + Ti additions on the structure and properties of Fe-Cr-Co ductile magnet alloys [J]. IEEE Trans. Magn., 1976, 12: 977
|
5 |
Zijlstra H . Trends in permanent magnet material development [J]. IEEE Trans. Magn., 1978, 14: 661
|
6 |
Altafi M , Mohammad Sharifi E , Ghasemi A . The effect of various heat treatments on the magnetic behavior of the Fe-Cr-Co magnetically hard alloy [J]. J. Magn. Magn. Mater., 2020, 507: 166837
|
7 |
Homma M , Horikoshi E , Minowa T , et al . High-energy Fe-Cr-Co permanent magnets with (BH)max ≃8-10 MG Oe [J]. Appl. Phys. Lett., 1980, 37: 92
|
8 |
Minowa T , Okada M , Homma M . Further studies of the miscibility gap in an Fe-Cr-Co permanent magnet system [J]. IEEE Trans. Magn., 1980, 16: 529
|
9 |
Kaneko H , Homma M , Nakamura K , et al . Phase diagram of Fe-Cr-Co permanent magnet system [J]. IEEE Trans. Magn., 1977, 13: 1325
|
10 |
Kaneko H , Homma M , Nakamura K , et al . Fe-Cr-Co permanent magnet alloys containing silicon [J]. IEEE Trans. Magn., 1972, 8: 347
|
11 |
Samarin B A , Kolchin A E , Kal'Ner Y V . Effect of prior aging and flat rooling on the structure and magnetic properties of alloys of the Fe-Cr-Co-Cu system [J]. Met. Sci. Heat Treat., 1986, 28: 690
|
12 |
Stel'Mashok S I , Milyaev I M , Yusupov V S , et al . Magnetic and mechanical properties of hard magnetic alloys 30Kh21K3M and 30Kh20K2M2V [J]. Met. Sci. Heat Treat., 2017, 58: 622
|
13 |
Tao S , Ahmad Z , Khan I U , et al . Phase, microstructure and magnetic properties of 45.5Fe-28Cr-20Co-3Mo-1.5Ti-2Nb permanent magnet [J]. J. Magn. Magn. Mater., 2019, 469: 342
|
14 |
Han X H , Bu S J , Wu X , et al . Effects of multi-stage aging on the microstructure, domain structure and magnetic properties of Fe-24Cr-12Co-1.5Si ribbon magnets [J]. J. Alloys Compd., 2017, 694: 103
|
15 |
Jin S . Deformation-induced anisotropic Cr-Co-Fe permanent magnet alloys [J]. IEEE Trans. Magn., 1979, 15: 1748
|
16 |
Sugimoto S , Okada M , Homma M . The enhancement of the magnetic properties of Fe-Cr-Co-Mo polycrystalline permanent magnet alloys by cold rolling and annealing [J]. J. Appl. Phys., 1988, 63: 3707
|
17 |
Sun X Y , Xu C Y , Zhen L , et al . Evolution of modulated structure in Fe-Cr-Co alloy during isothermal ageing with different external magnetic field conditions [J]. J. Magn. Magn. Mater., 2007, 312: 342
|
18 |
Jin S , Gayle N . Low-cobalt Cr-Co-Fe magnet alloys obtained by slow cooling under magnetic field [J]. IEEE Trans. Magn., 1980, 16: 526
|
19 |
Zhang X J , Xu R G , Wu W H , et al . The influences of magnetic heat-treatment on the microstructure and magnetic properties [J]. Electr. Eng. Mater., 2002, (2): 31
|
19 |
张小菊, 徐仁根, 吴危航 等 . 磁场热处理对Fe-Cr-Co合金组织与性能的影响 [J]. 电工材料, 2002, (2): 31
|
20 |
Zhang L , Xiang Z L , Li X D , et al . Spinodal decomposition in Fe-25Cr-12Co alloys under the influence of high magnetic field and the effect of grain boundary [J]. Nanomaterials (Basel), 2018, 8: 578
|
21 |
Jin S , Mahajan S , Brasen D . Mechanical properties of Fe-Cr-Co ductile permanent magnet alloys [J]. Metall. Mater. Trans., 1980, 11A: 69
|
22 |
Suzudo T , Takamizawa H , Nishiyama Y , et al . Atomistic modeling of hardening in spinodally-decomposed Fe-Cr binary alloys [J]. J. Nucl. Mater., 2020, 540: 152306
|
23 |
Takahashi A , Suzuki T , Nomoto A , et al . Influence of spinodal decomposition structures on the strength of Fe-Cr alloys: A dislocation dynamics study [J]. Acta Mater., 2018, 146: 160
|
24 |
Tang Y P , Goto W , Hirosawa S , et al . Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition [J]. Acta Mater., 2017, 131: 57
|
25 |
Yan J Z , Li N , Fu X , et al . The strengthening effect of spinodal decomposition and twinning structure in MnCu-based alloy [J]. Mater. Sci. Eng., 2014, A618: 205
|
26 |
Kaneko H , Homma M , Fukunaga T , et al . Fe-Cr-Co permanent magnet alloys containing Nb and Al [J]. IEEE Trans. Magn., 1975, 11: 1440
|
27 |
Han K , Xin Y , Walsh R , et al . The effects of grain boundary precipitates on cryogenic properties of aged 316-type stainless steels [J]. Mater. Sci. Eng., 2009, A516: 169
|
28 |
Downey S , Han K , Kalu P N , et al . A study of submicron grain boundary precipitates in ultralow carbon 316LN steels [J]. Metall. Mater. Trans., 2010, 41A: 881
|
29 |
Sims J R , Schillig J B , Boebinger G S , et al . The U.S. NHMFL 60 T long pulse magnet [J]. IEEE Trans. Appl. Superconduct., 2002, 12: 480
|
30 |
Yang L , Sun X Y , Zhen L , et al . Hyperfine structure variations in an Fe-Cr-Co alloy exposed to electron irradiation: Mössbauer spectroscopy characterization [J]. Nucl. Instrum. Methods Phys. Res. Sect., 2014, 338B: 52
|
31 |
Belozerov E V , Mushnikov N V , Ivanova G V , et al . High-strength magnetically hard Fe-Cr-Co-based alloys with reduced content of chromium and cobalt [J]. Phys. Met. Metallogr., 2012, 113: 319
|
32 |
Yang X , Jiang Z , Li J B , et al . Identification of the intrinsic atomic disorder in ZrNiSn-based alloys and their effects on thermoelectric properties [J]. Nano Energy, 2020, 78: 105372
|
33 |
Pathak A K , Khan M , Gschneidner K A Jr , et al . Magnetic properties of bulk, and rapidly solidified nanostructured (Nd1 - x Ce x )2-Fe14 - y Co y B ribbons [J]. Acta Mater., 2016, 103: 211
|
34 |
Pathak A K , Khan M , Gschneidner K A , et al . Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets [J]. Adv. Mater., 2015, 27: 2663
|
35 |
Drápal S . The origin of anisotropy in Fe-Cr-Co alloys [J]. Czech. J. Phys., 1987, 37B: 1174
|
36 |
López-Ortega A , Estrader M , Salazar-Alvarez G , et al . Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles [J]. Phys. Rep., 2015, 553: 1
|
37 |
Cui B Z , Han K , Garmestani H , et al . Enhancement of exchange coupling and hard magnetic properties in nanocomposites by magnetic annealing [J]. Acta Mater., 2005, 53: 4155
|
38 |
Tan X H , Li H Y , Xu H , et al . A cost-effective approach to optimizing microstructure and magnetic properties in Ce17Fe78B6 alloys [J]. Materials (Basel), 2017, 10: 869
|
39 |
Ren K Z , Tan X H , Li H Y , et al . The effects of the addition of Dy, Nb, and Ga on microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposite permanent magnetic alloys [J]. Microsc. Microanal., 2017, 23: 425
|
40 |
Kato M . Hardening by spinodally modulated structure in b.c.c. alloys [J]. Acta Metall., 1981, 29: 79
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|