Please wait a minute...
金属学报  2022, Vol. 58 Issue (1): 103-113    DOI: 10.11900/0412.1961.2021.00094
  研究论文 本期目录 | 过刊浏览 |
Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响
项兆龙1,2,3, 张林1, XIN Yan3, 安佰灵1,2,3, NIU Rongmei3, LU Jun3, MARDANI Masoud3, HAN Ke3(), 王恩刚1()
1. 东北大学 材料电磁过程研究教育部重点实验室 沈阳 110819
2. 东北大学 材料科学与工程学院 沈阳 110819
3. National High Magnetic Field Laboratory, Florida State University, Tallahassee 32310, USA
Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy
XIANG Zhaolong1,2,3, ZHANG Lin1, XIN Yan3, AN Bailing1,2,3, NIU Rongmei3, LU Jun3, MARDANI Masoud3, HAN Ke3(), WANG Engang1()
1. Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3. National High Magnetic Field Laboratory, Florida State University, Tallahassee 32310, USA
引用本文:

项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
Zhaolong XIANG, Lin ZHANG, Yan XIN, Bailing AN, Rongmei NIU, Jun LU, Masoud MARDANI, Ke HAN, Engang WANG. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. Acta Metall Sin, 2022, 58(1): 103-113.

全文: PDF(3375 KB)   HTML
摘要: 

以(84 - X)FeXCr15Co1Si (X = 20、25、30、35,质量分数,%)合金为研究对象,利用具有原子分辨率的扫描透射电子显微镜(STEM)研究了Cr元素对热处理后合金中α 1α 2相形态、体积分数、尺寸分布、相成分、合金磁性能和硬度的影响。STEM分析结果表明,随着Cr含量由20%增加到35%,α 1相的平均尺寸由26 nm逐渐增加到55 nm;随着Cr含量由20%增加到25%,α 1相的体积分数增加了12%,但Cr含量的继续增加不能进一步改变体积分数。EDS结果表明,随着Cr含量的增加,富Fe-Co α 1相里的Fe含量逐渐降低,而Cr和Co含量逐渐增加;同时,富Cr α 2相里的Fe和Co含量逐渐降低,而Cr的含量逐渐增加。调幅分解过程可促使试样的硬度显著上升,且Cr含量的增加也可提升合金硬度。合金的剩磁、矫顽力和磁能积均随Cr含量的增加而逐渐增大,3者在Cr含量为25%时均达到最大值,并随Cr含量的继续增加而降低。分析了磁性能与α 1相的尺寸、体积分数、成分以及与α 1α 2相成分差之间的关系,讨论了调幅分解硬化合金的机理,并分析了Cr含量影响硬度的原因。

关键词 FeCrCoSi合金调幅分解STEM-HAADF磁性能硬度    
Abstract

FeCrCo permanent magnet alloys draw wide attention because of their excellent machinability. These alloys can be deformed and extruded into thin wires or sheets for various applications, such as electric motors, telephone receivers, printers, and stereo cartridges. In these alloys, the content and distribution of Cr play an important role in improving their magnetic and hardness properties. To optimize both properties of these alloys, the effect of Cr must be studied. This study describes the effect of Cr content on microstructure, i.e., volume fraction, size, and composition of α 1 and α 2 phases in (84 - X)FeXCr15Co1Si (X = 20, 25, 30, 35, mass fraction, %) samples using atomic-resolution STEM. The effect of microstructure parameters on both Vickers hardness and magnetic properties was evaluated. STEM images showed that the average size of the α 1 phase increased from 26 nm to 55 nm with an increase in Cr content from 20% to 35%. When the content of Cr increased from 20% to 25%, the volume fraction of the α 1 phase increased by 12%, and when the content of Cr increased beyond 25%, the volume fraction remained the same. EDS results showed that with the increase of Cr content, in the (Fe-Co)-rich α 1 phase, the content of Fe decreased, whereas the contents of Cr and Co increased. By contrast, in the Cr-rich α 2 phase, the contents of Fe and Co decreased but the content of Cr increased. After step aging, hardness increased because of spinodal decomposition and continued to increase with an increase in Cr content. Remanence, coercivity, and magnetic energy product reached their maximum values when the content of Cr was at 25% and decreased as the content of Cr increased. The dependence of magnetic properties on the size, volume fraction, composition of α 1 phase, and difference in composition between α 1 and α 2 phases was discussed. The mechanism for hardening was also discussed, which increased with the Cr content.

Key wordsFeCrCoSi alloy    spinodal decomposition    STEM-HAADF    magnetic property    hardness
收稿日期: 2021-03-01     
ZTFLH:  TG132.27  
基金资助:国家自然科学基金项目No.51674083,高等学校学科创新引智计划项目2.0 No.BP0719037,以及美国国家科学基金项目
Nos.DMR-1157490 和DMR-1644779
作者简介: 项兆龙,男,1988年生,博士生
图1  FeCrCoSi试样固溶处理、退火及分级回火工艺示意图
Heat treatment 64Fe20Cr15Co1Si 59Fe25Cr15Co1Si 54Fe30Cr15Co1Si 49Fe35Cr15Co1Si
Solution treatment 20Cr-ST 25Cr-ST 30Cr-ST 35Cr-ST
Step aging 20Cr-SA 25Cr-SA 30Cr-SA 35Cr-SA
表1  不同Cr含量的FeCrCoSi试样及其经过不同热处理后的编号
图2  固溶处理和分级回火处理后不同Cr含量FeCrCoSi试样的XRD谱
图3  不同Cr含量试样经分级回火后的调幅分解组织HAADF像和α 1相尺寸分布统计图

Sample

D α 1

nm

Magnetic property Mass fraction / % V α 1

Br

T

H

kA·m-1

BH max

kJ·m-3

C α 1 C α 2 ΔC t %
20Cr-SA 26 ± 4.1 0.61 10.2 1.67 69.3Fe12.9Cr16.9Co0.9Si 49.6Fe36.5Cr12.0Co1.9Si 49.2 54
25Cr-SA 30 ± 6.0 0.84 41.7 13.69 67.2Fe11.8Cr20.3Co0.7Si 38.5Fe51.9Cr8.1Co1.5Si 81.8 60
30Cr-SA 33 ± 5.7 0.64 35.3 6.92 60.1Fe16.4Cr22.9Co0.6Si 33.6Fe56.2Cr8.1Co2.1Si 82.6 62
35Cr-SA 55 ± 8.9 0.30 14.5 1.11 57.4Fe19.1Cr23.2Co0.3Si 31.3Fe60.7Cr6.8Co1.2Si 85.0 61
表2  不同Cr含量试样经分级回火后的磁性能及α 1相的尺寸和体积分数、α 1和α 2相的成分以及2相之间Fe、Cr、Co和Si的成分差的绝对值之和
图4  试样35Cr-SA调幅组织在[001]方向的HAADF像
图5  分级回火处理后不同Cr含量试样的磁滞回线
图6  不同热处理状态下不同Cr含量试样的Vickers硬度
图7  不同Cr含量试样经分级回火后调幅组织中Fe、Cr、Co和Si元素EDS面扫描叠加图
Sample E / GPa Y / GPa ΔC Cr / % ΔC Co / % ΔC Si / %
20Cr-SA 223 333 24 2 1
25Cr-SA 226 338 40 12 0.8
30Cr-SA 229 342 40 15 1.5
35Cr-SA 233 348 42 16 0.9
表3  试样20Cr-SA~35Cr-SA的E、Y、ΔCCr 、ΔC Co和ΔC Si参数
图8  分级回火处理后不同Cr含量试样中调幅分解的振幅和波长
1 Kaneko H , Homma M , Nakamura K . New ductile permanent magnet of Fe-Cr-Co system [J]. AIP Conf. Proc., 1971, 5: 1088
2 Rastabi R A , Ghasemi A , Tavoosi M , et al . Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering [J]. J. Magn. Magn. Mater., 2017, 426: 744
3 Ushakova O A , Dinislamova E H , Gorshenkov M V , et al . Structure and magnetic properties of Fe-Cr-Co nanocrystalline alloys for permanent magnets [J]. J. Alloys Compd., 2014, 586(suppl.1): S291
4 Kaneko H , Homma M , Minowa T . Effect of V and V + Ti additions on the structure and properties of Fe-Cr-Co ductile magnet alloys [J]. IEEE Trans. Magn., 1976, 12: 977
5 Zijlstra H . Trends in permanent magnet material development [J]. IEEE Trans. Magn., 1978, 14: 661
6 Altafi M , Mohammad Sharifi E , Ghasemi A . The effect of various heat treatments on the magnetic behavior of the Fe-Cr-Co magnetically hard alloy [J]. J. Magn. Magn. Mater., 2020, 507: 166837
7 Homma M , Horikoshi E , Minowa T , et al . High-energy Fe-Cr-Co permanent magnets with (BH)max ≃8-10 MG Oe [J]. Appl. Phys. Lett., 1980, 37: 92
8 Minowa T , Okada M , Homma M . Further studies of the miscibility gap in an Fe-Cr-Co permanent magnet system [J]. IEEE Trans. Magn., 1980, 16: 529
9 Kaneko H , Homma M , Nakamura K , et al . Phase diagram of Fe-Cr-Co permanent magnet system [J]. IEEE Trans. Magn., 1977, 13: 1325
10 Kaneko H , Homma M , Nakamura K , et al . Fe-Cr-Co permanent magnet alloys containing silicon [J]. IEEE Trans. Magn., 1972, 8: 347
11 Samarin B A , Kolchin A E , Kal'Ner Y V . Effect of prior aging and flat rooling on the structure and magnetic properties of alloys of the Fe-Cr-Co-Cu system [J]. Met. Sci. Heat Treat., 1986, 28: 690
12 Stel'Mashok S I , Milyaev I M , Yusupov V S , et al . Magnetic and mechanical properties of hard magnetic alloys 30Kh21K3M and 30Kh20K2M2V [J]. Met. Sci. Heat Treat., 2017, 58: 622
13 Tao S , Ahmad Z , Khan I U , et al . Phase, microstructure and magnetic properties of 45.5Fe-28Cr-20Co-3Mo-1.5Ti-2Nb permanent magnet [J]. J. Magn. Magn. Mater., 2019, 469: 342
14 Han X H , Bu S J , Wu X , et al . Effects of multi-stage aging on the microstructure, domain structure and magnetic properties of Fe-24Cr-12Co-1.5Si ribbon magnets [J]. J. Alloys Compd., 2017, 694: 103
15 Jin S . Deformation-induced anisotropic Cr-Co-Fe permanent magnet alloys [J]. IEEE Trans. Magn., 1979, 15: 1748
16 Sugimoto S , Okada M , Homma M . The enhancement of the magnetic properties of Fe-Cr-Co-Mo polycrystalline permanent magnet alloys by cold rolling and annealing [J]. J. Appl. Phys., 1988, 63: 3707
17 Sun X Y , Xu C Y , Zhen L , et al . Evolution of modulated structure in Fe-Cr-Co alloy during isothermal ageing with different external magnetic field conditions [J]. J. Magn. Magn. Mater., 2007, 312: 342
18 Jin S , Gayle N . Low-cobalt Cr-Co-Fe magnet alloys obtained by slow cooling under magnetic field [J]. IEEE Trans. Magn., 1980, 16: 526
19 Zhang X J , Xu R G , Wu W H , et al . The influences of magnetic heat-treatment on the microstructure and magnetic properties [J]. Electr. Eng. Mater., 2002, (2): 31
19 张小菊, 徐仁根, 吴危航 等 . 磁场热处理对Fe-Cr-Co合金组织与性能的影响 [J]. 电工材料, 2002, (2): 31
20 Zhang L , Xiang Z L , Li X D , et al . Spinodal decomposition in Fe-25Cr-12Co alloys under the influence of high magnetic field and the effect of grain boundary [J]. Nanomaterials (Basel), 2018, 8: 578
21 Jin S , Mahajan S , Brasen D . Mechanical properties of Fe-Cr-Co ductile permanent magnet alloys [J]. Metall. Mater. Trans., 1980, 11A: 69
22 Suzudo T , Takamizawa H , Nishiyama Y , et al . Atomistic modeling of hardening in spinodally-decomposed Fe-Cr binary alloys [J]. J. Nucl. Mater., 2020, 540: 152306
23 Takahashi A , Suzuki T , Nomoto A , et al . Influence of spinodal decomposition structures on the strength of Fe-Cr alloys: A dislocation dynamics study [J]. Acta Mater., 2018, 146: 160
24 Tang Y P , Goto W , Hirosawa S , et al . Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition [J]. Acta Mater., 2017, 131: 57
25 Yan J Z , Li N , Fu X , et al . The strengthening effect of spinodal decomposition and twinning structure in MnCu-based alloy [J]. Mater. Sci. Eng., 2014, A618: 205
26 Kaneko H , Homma M , Fukunaga T , et al . Fe-Cr-Co permanent magnet alloys containing Nb and Al [J]. IEEE Trans. Magn., 1975, 11: 1440
27 Han K , Xin Y , Walsh R , et al . The effects of grain boundary precipitates on cryogenic properties of aged 316-type stainless steels [J]. Mater. Sci. Eng., 2009, A516: 169
28 Downey S , Han K , Kalu P N , et al . A study of submicron grain boundary precipitates in ultralow carbon 316LN steels [J]. Metall. Mater. Trans., 2010, 41A: 881
29 Sims J R , Schillig J B , Boebinger G S , et al . The U.S. NHMFL 60 T long pulse magnet [J]. IEEE Trans. Appl. Superconduct., 2002, 12: 480
30 Yang L , Sun X Y , Zhen L , et al . Hyperfine structure variations in an Fe-Cr-Co alloy exposed to electron irradiation: Mössbauer spectroscopy characterization [J]. Nucl. Instrum. Methods Phys. Res. Sect., 2014, 338B: 52
31 Belozerov E V , Mushnikov N V , Ivanova G V , et al . High-strength magnetically hard Fe-Cr-Co-based alloys with reduced content of chromium and cobalt [J]. Phys. Met. Metallogr., 2012, 113: 319
32 Yang X , Jiang Z , Li J B , et al . Identification of the intrinsic atomic disorder in ZrNiSn-based alloys and their effects on thermoelectric properties [J]. Nano Energy, 2020, 78: 105372
33 Pathak A K , Khan M , Gschneidner K A Jr , et al . Magnetic properties of bulk, and rapidly solidified nanostructured (Nd1 - x Ce x )2-Fe14 - y Co y B ribbons [J]. Acta Mater., 2016, 103: 211
34 Pathak A K , Khan M , Gschneidner K A , et al . Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets [J]. Adv. Mater., 2015, 27: 2663
35 Drápal S . The origin of anisotropy in Fe-Cr-Co alloys [J]. Czech. J. Phys., 1987, 37B: 1174
36 López-Ortega A , Estrader M , Salazar-Alvarez G , et al . Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles [J]. Phys. Rep., 2015, 553: 1
37 Cui B Z , Han K , Garmestani H , et al . Enhancement of exchange coupling and hard magnetic properties in nanocomposites by magnetic annealing [J]. Acta Mater., 2005, 53: 4155
38 Tan X H , Li H Y , Xu H , et al . A cost-effective approach to optimizing microstructure and magnetic properties in Ce17Fe78B6 alloys [J]. Materials (Basel), 2017, 10: 869
39 Ren K Z , Tan X H , Li H Y , et al . The effects of the addition of Dy, Nb, and Ga on microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposite permanent magnetic alloys [J]. Microsc. Microanal., 2017, 23: 425
40 Kato M . Hardening by spinodally modulated structure in b.c.c. alloys [J]. Acta Metall., 1981, 29: 79
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[3] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[4] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[5] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[8] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[9] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[12] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[13] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[14] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[15] 林晓冬,彭群家,韩恩厚,柯伟. 退火对热老化308L不锈钢焊材显微结构的影响[J]. 金属学报, 2019, 55(5): 555-565.