|
|
|
| Heterogeneous Structure and Mechanical Properties of Strong and Tough Al Alloys Prepared by Selective Laser Melting |
LIN Yan1, SI Cheng1, XU Jingyu1, LIU Ze2, ZHANG Cheng1( ), LIU Lin1 |
1.State Key Lab for Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2.Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China |
|
Cite this article:
LIN Yan, SI Cheng, XU Jingyu, LIU Ze, ZHANG Cheng, LIU Lin. Heterogeneous Structure and Mechanical Properties of Strong and Tough Al Alloys Prepared by Selective Laser Melting. Acta Metall Sin, 2022, 58(11): 1509-1518.
|
|
|
Abstract Aluminum alloys have been widely used in fields such as automotive and aerospace industries, owing to their excellent mechanical properties, lightweight, and low recycling costs. However, aluminum alloys processed by selective laser melting (SLM) typically suffer from insufficient strength and fracture toughness. To tackle this issue, a new strategy that integrates eutectic composition design and grain refinement has been adopted to create a heterogeneous structure that can improve strength and toughness of SLMed Al-Fe-Zr alloys. The SLMed AlFe5 alloy consists of high-volume-fraction of coarse and columnar grains and low-volume-fraction of fine grains, and no obvious heterogeneity is visible across the microstructure length scale. With the addition of Zr, the volume fraction of fine grains significantly increases, leading to the heterogeneous distribution of coarse and fine grains in the SLMed AlFe5Zr1 alloy. Meanwhile, both AlFe5 and AlFe5Zr1 alloys show a nanoscale cellular structure. This type of a nanosized cellular structure, together with supersaturated Fe and high-density dislocations, contributes to a high yield strength of 400 MPa for the SLMed AlFeZr alloys. The heterogeneous structure can further improve the strain strengthening capability, enabling a tensile strength as high as 450 MPa for the AlFe5Zr1 alloy. Furthermore, the heterogeneous structure promotes crack deflection and crack tip blunting, which can effectively increase crack growth resistance and impart superior fracture toughness to the AlFe5Zr1 alloy.
|
|
Received: 23 June 2022
|
|
|
| Fund: National Natural Science Foundation of China(52061160483);National Natural Science Foundation of China(92166130);National Natural Science Foundation of China(52001075);China Postdoctoral Science Foundation(2021M701290) |
About author: ZHANG Cheng, associate professor, Tel: (027)87558200, E-mail: czhang@hust.edu.cn
|
| 1 |
Wong K V, Hernandez A. A review of additive manufacturing [J]. Int. Schol. Res. Not., 2012, 2012: 208760
|
| 2 |
Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
|
| 3 |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
|
| 4 |
Lewandowski J J, Seifi M. Metal additive manufacturing: A review of mechanical properties [J]. Annu. Rev. Mater. Res., 2016, 46: 151
doi: 10.1146/annurev-matsci-070115-032024
|
| 5 |
Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
|
| 6 |
Barriobero-Vila P, Gussone J, Stark A, et al. Peritectic titanium alloys for 3D printing [J]. Nat. Commun., 2018, 9: 3426
doi: 10.1038/s41467-018-05819-9
pmid: 30143641
|
| 7 |
Sun Z J, Tan X P, Tor S B, et al. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting [J]. NPG Asia Mater., 2018, 10: 127
doi: 10.1038/s41427-018-0018-5
|
| 8 |
Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
|
| 9 |
Mishra R S, Thapliyal S. Design approaches for printability-performance synergy in Al alloys for laser-powder bed additive manufacturing [J]. Mater. Des., 2021, 204: 109640
doi: 10.1016/j.matdes.2021.109640
|
| 10 |
Rometsch P, Jia Q B, Yang K V, et al. Aluminum alloys for selective laser melting—Towards improved performance [A]. Additive Manufacturing for the Aerospace Industry [M]. Amsterdam: Elsevier, 2019: 301
|
| 11 |
Todd I. No more tears for metal 3D printing [J]. Nature, 2017, 549: 342
doi: 10.1038/549342a
|
| 12 |
Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
|
| 13 |
Prashanth K G, Scudino S, Eckert J. Defining the tensile properties of Al-12Si parts produced by selective laser melting [J]. Acta Mater., 2017, 126: 25
doi: 10.1016/j.actamat.2016.12.044
|
| 14 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
|
| 15 |
Spierings A B, Dawson K, Kern K, et al. SLM-processed Sc-and Zr-modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment [J]. Mater. Sci. Eng., 2017, A701: 264
|
| 16 |
Jia Q B, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength AlMnSc alloy: Alloy design and strengthening mechanisms [J]. Acta Mater., 2019, 171: 108
doi: 10.1016/j.actamat.2019.04.014
|
| 17 |
Li R D, Wang M B, Li Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms [J]. Acta Mater., 2020, 193: 83
doi: 10.1016/j.actamat.2020.03.060
|
| 18 |
Pham M S, Dovgyy B, Hooper P A, et al. The role of side-branching in microstructure development in laser powder-bed fusion [J]. Nat. Commun., 2020, 11: 749
doi: 10.1038/s41467-020-14453-3
|
| 19 |
Zhu Z G, Ng F L, Seet H L, et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation [J]. Mater. Today, 2022, 52: 90
doi: 10.1016/j.mattod.2021.11.019
|
| 20 |
Liu Y G, Zhang J Q, Tan Q Y, et al. Additive manufacturing of high strength copper alloy with heterogeneous grain structure through laser powder bed fusion [J]. Acta Mater., 2021, 220: 117311
doi: 10.1016/j.actamat.2021.117311
|
| 21 |
Li Y, Chen K, Narayan R L, et al. Multi-scale microstructural investigation of a laser 3D printed Ni-based superalloy [J]. Addit. Manuf., 2020, 34: 101220
|
| 22 |
Liu L X, Pan J, Zhang C, et al. Achieving high strength and ductility in a 3D-printed high entropy alloy by cooperative planar slipping and stacking fault [J]. Mater. Sci. Eng., 2022, A843: 143106
|
| 23 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
|
| 24 |
Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
|
| 25 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
|
| 26 |
Lin Y, Pan J, Zhou H F, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel [J]. Acta Mater., 2018, 153: 279
doi: 10.1016/j.actamat.2018.04.065
|
| 27 |
Thapliyal S, Shukla S, Zhou L, et al. Design of heterogeneous structured Al alloys with wide processing window for laser-powder bed fusion additive manufacturing [J]. Addit. Manuf., 2021, 42: 102002
|
| 28 |
Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks [M]. Hellertown: Dell Research Corporation, 1973: 34
|
| 29 |
Roth C C, Tancogne-Dejean T, Mohr D. Plasticity and fracture of cast and SLM AlSi10Mg: High-throughput testing and modeling [J]. Addit. Manuf., 2021, 43: 101998
|
| 30 |
Wu J, Wang X Q, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg [J]. Acta Mater., 2016, 117: 311
doi: 10.1016/j.actamat.2016.07.012
|
| 31 |
Tucho W M, Cuvillier P, Sjolyst-Kverneland A, et al. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment [J]. Mater. Sci. Eng., 2017, A689: 220
|
| 32 |
Voisin T, Forien J B, Perron A, et al. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion [J]. Acta Mater., 2021, 203: 116476
doi: 10.1016/j.actamat.2020.11.018
|
| 33 |
Wang H, Zhu Z G, Chen H S, et al. Effect of cyclic thermal loadings on the microstructural evolution of a cantor alloy in 3D printing processes [J]. Microsc. Microanal., 2019, 25: 2568
doi: 10.1017/S1431927619013576
|
| 34 |
Kou S. Welding Metallurgy [M]. 2nd Ed., Hoboken, New Jersey: John Wiley& Sons, Inc., 2003: 17
|
| 35 |
Prashanth K G, Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys [J]. J. Alloys Compd., 2017, 707: 27
doi: 10.1016/j.jallcom.2016.12.209
|
| 36 |
Birnbaum A J, Steuben J C, Barrick E J, et al. Intrinsic strain aging, Σ3 boundaries, and origins of cellular substructure in additively manufactured 316L [J]. Addit. Manuf., 2019, 29: 100784
|
| 37 |
Bertsch K M, De Bellefon G M, Kuehl B, et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L [J]. Acta Mater., 2020, 199: 19
doi: 10.1016/j.actamat.2020.07.063
|
| 38 |
Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
|
| 39 |
Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
|
| 40 |
Kamikawa N, Huang X X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed [J]. Acta Mater., 2009, 57: 4198
doi: 10.1016/j.actamat.2009.05.017
|
| 41 |
Wu Y Y, Zhang T M, Chen C, et al. Microstructure and mechanical property evolution of additive manufactured eutectic Al-2Fe alloy during solidification and aging [J]. J. Alloys Compd., 2022, 897: 163243
doi: 10.1016/j.jallcom.2021.163243
|
| 42 |
Thangaraju S, Heilmaier M, Murty B S, et al. On the estimation of true Hall-Petch constants and their role on the superposition law exponent in Al alloys [J]. Adv. Eng. Mater., 2012, 14: 892
doi: 10.1002/adem.201200114
|
| 43 |
Clausen B, Lorentzen T, Leffers T. Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses [J]. Acta Mater., 1998, 46: 3087
doi: 10.1016/S1359-6454(98)00014-7
|
| 44 |
Hansen N, Huang X. Microstructure and flow stress of polycrystals and single crystals [J]. Acta Mater., 1998, 46: 1827
doi: 10.1016/S1359-6454(97)00365-0
|
| 45 |
Hong Y J, Zhou C S, Zheng Y Y, et al. The cellular boundary with high density of dislocations governed the strengthening mechanism in selective laser melted 316L stainless steel [J]. Mater. Sci. Eng., 2021, A799: 140279
|
| 46 |
Chen B, Moon S K, Yao X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy [J]. Scr. Mater., 2017, 141: 45
doi: 10.1016/j.scriptamat.2017.07.025
|
| 47 |
Wang P, Gammer C, Brenne F, et al. Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting [J]. Mater. Sci. Eng., 2018, A711: 562
|
| 48 |
Zhang X X, Andrä H, Harjo S, et al. Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation [J]. Mater. Des., 2021, 198: 109339
doi: 10.1016/j.matdes.2020.109339
|
| 49 |
Hu Z H, Qi Y, Nie X J, et al. The Portevin-Le Chatelier (PLC) effect in an Al-Cu aluminum alloy fabricated by selective laser melting [J]. Mater. Charact., 2021, 178: 111198
doi: 10.1016/j.matchar.2021.111198
|
| 50 |
Zhang X X, Knoop D, Andrä H, et al. Multiscale constitutive modeling of additively manufactured Al-Si-Mg alloys based on measured phase stresses and dislocation density [J]. Int. J. Plast., 2021, 140: 102972
doi: 10.1016/j.ijplas.2021.102972
|
| 51 |
Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
|
| 52 |
Li J J, Lu W J, Chen S H, et al. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures [J]. Int. J. Plast., 2020, 126: 102626
doi: 10.1016/j.ijplas.2019.11.005
|
| 53 |
Cotterell B, Rice J R. Slightly curved or kinked cracks [J]. Int. J. Fract., 1980, 16: 155
doi: 10.1007/BF00012619
|
| 54 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581
pmid: 25190791
|
| 55 |
Launey M E, Ritchie R O. On the fracture toughness of advanced materials [J]. Adv. Mater., 2009, 21: 2103
doi: 10.1002/adma.200803322
|
| 56 |
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115
pmid: 22020005
|
| 57 |
Lin Y, Yu Q, Pan J, et al. On the impact toughness of gradient-structured metals [J]. Acta Mater., 2020, 193: 125
doi: 10.1016/j.actamat.2020.04.027
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|