|
|
Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite |
NIE Jinfeng1( ), WU Yuli1, XIE Kewei2, LIU Xiangfa2( ) |
1.Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China 2.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China |
|
Cite this article:
NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite. Acta Metall Sin, 2022, 58(11): 1497-1508.
|
Abstract Efforts to develop high-strength and heat-resistant Al alloys have been ongoing to reduce the weight of automobiles and achieve transportation with low emissions. Traditional heat-resistant Al alloys are difficult to use at temperatures higher than 300oC because of the strength loss from precipitate coarsening behavior. This study examined the microstructure, mechanical properties, and thermal stability of a heterostructured Al nanocomposite reinforced by AlN nanoparticles using FESEM, TEM, EBSD, tensile test, and thermal exposure experiments. The heterogeneous lamellar structure of Al-AlN nanocomposite was composed of alternate distributed particle-rich and particle-free zones. Ultrafine Al grains formed in the particle-rich zone, whereas coarse Al grains formed in the particle-free zone. The mechanical tests of the Al-AlN nanocomposite showed no visible microhardness or loss of tensile strength after severe thermal exposure at 500oC for up to 100 h. The outstanding thermal stability and tensile strength combination were much better than the data in the literature. It is believed that the intergranular AlN nanoparticles pinned the Al grain boundaries and contributed to the superior thermal stability and strength. Furthermore, an abnormal increase in strength at the initial stage of the thermal exposure tests was revealed. A thermal exposure temperature resulted in a greater increase in strength and hardness, which was rationally interpreted in view of grain boundary relaxation strengthening.
|
Received: 20 June 2022
|
|
Fund: National Natural Science Foundation of China(51731007);National Natural Science Foundation of China(52071179);National Natural Science Foundation of China(52271033);Fundamental Research Funds for the Central Universities(N30920021160);Natural Science Foundation of Jiangsu Province(BK20221493) |
1 |
Han T L, Liu E Z, Li J J, et al. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study [J]. J. Mater. Sci. Technol., 2020, 46: 21
doi: 10.1016/j.jmst.2019.09.045
|
2 |
Liu Y F, Wang F, Cao Y, et al. Unique defect evolution during the plastic deformation of a metal matrix composite [J]. Scr. Mater., 2019, 162: 316
doi: 10.1016/j.scriptamat.2018.11.038
|
3 |
Bi S, Li Z C, Sun H X, et al. Microstructure and mechanical properties of carbon nanotubes-reinforced 7055Al composites fabricated by high-energy ball milling and powder metallurgy processing [J]. Acta Metall. Sin., 2021, 57: 71
|
|
毕 胜, 李泽琛, 孙海霞 等. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能 [J]. 金属学报, 2021, 57: 71
|
4 |
Nie J F, Chen Y Y, Chen X, et al. Stiff, strong and ductile heterostructured aluminum composites reinforced with oriented nanoplatelets [J]. Scr. Mater., 2020, 189: 140
doi: 10.1016/j.scriptamat.2020.08.017
|
5 |
Tao R, Zhao Y T, Chen G, et al. Microstructure and properties of in-situ ZrB2 np/AA6111 composites synthesized under an electromagnetic field [J]. Acta Metall. Sin., 2019, 55: 160
|
|
陶 然, 赵玉涛, 陈 刚 等. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究 [J]. 金属学报, 2019, 55: 160
|
6 |
Qiu F, Tong H T, Shen P, et al. Overview: SiC/Al interface reaction and interface structure evolution mechanism [J]. Acta Metall. Sin., 2019, 55: 87
|
|
邱 丰, 佟昊天, 沈 平 等. 综述: SiC/Al界面反应与界面结构演变规律及机制 [J]. 金属学报, 2019, 55: 87
|
7 |
Ma X, Zhao Y F, Tian W J, et al. A novel Al matrix composite reinforced by nano-AlNp network [J]. Sci. Rep., 2016, 6: 34919
doi: 10.1038/srep34919
pmid: 27721417
|
8 |
Nie J F, Lu F H, Huang Z W, et al. Improving the high-temperature ductility of Al composites by tailoring the nanoparticle network [J]. Materialia, 2020, 9: 100523
doi: 10.1016/j.mtla.2019.100523
|
9 |
Zhang S Q, Zhang Y C, Chen M, et al. Characterization of mechanical properties of aluminum cast alloy at elevated temperature [J]. Appl. Math. Mech., 2018, 39: 967
doi: 10.1007/s10483-018-2349-8
|
10 |
Sun M, Zhuang J W, Deng H L, et al. Reviews on the study of aluminum alloys and aluminum matrix composites with high-temperature anti-creep behavior [J]. Mater. Rep., 2021, 35: 11137
|
|
孙 茗, 庄景巍, 邓海亮 等. 高温抗蠕变铝合金及铝基复合材料研究进展 [J]. 材料导报, 2021, 35: 11137
|
11 |
Sui Y D, Wang Q D, Wang G L, et al. Effects of Sr content on the microstructure and mechanical properties of cast Al-12Si-4Cu-2Ni-0.8Mg alloys [J]. J. Alloys Compd., 2015, 622: 572
doi: 10.1016/j.jallcom.2014.10.148
|
12 |
Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy [J]. Acta Metall. Sin., 2021, 57: 129
|
|
高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略 [J]. 金属学报, 2021, 57: 129
|
13 |
Gao Y H, Guan P F, Su R, et al. Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance [J]. Mater. Res. Lett., 2020, 8: 446
doi: 10.1080/21663831.2020.1799447
|
14 |
Gong D, Jiang L T, Guan J T, et al. Stable second phase: The key to high-temperature creep performance of particle reinforced aluminum matrix composite [J]. Mater. Sci. Eng., 2020, A770: 138551
|
15 |
Tang F, Liao C P, Ahn B, et al. Thermal stability in nanostructured Al-5083/SiCp composites fabricated by cryomilling [J]. Powder Metall., 2007, 50: 307
doi: 10.1179/174329007X189630
|
16 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
|
17 |
Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2020, 9: 1
doi: 10.1080/21663831.2020.1796836
|
18 |
Estrin Y, Beygelzimer Y, Kulagin R, et al. Architecturing materials at mesoscale: Some current trends [J]. Mater. Res. Lett., 2021, 9: 399
doi: 10.1080/21663831.2021.1961908
|
19 |
Geng R, Zhao Q L, Qiu F, et al. Simultaneously increased strength and ductility via the hierarchically heterogeneous structure of Al-Mg-Si alloys/nanocomposite [J]. Mater. Res. Lett., 2020, 8: 225
doi: 10.1080/21663831.2020.1744759
|
20 |
Nie J F, Liu Y F, Wang F, et al. Key roles of particles in grain refinement and material strengthening for an aluminum matrix composite [J]. Mater. Sci. Eng., 2021, A801: 140414
|
21 |
Zhang Z M, Fan G L, Tan Z Q, et al. Bioinspired multiscale Al2O3-rGO/Al laminated composites with superior mechanical properties [J]. Composites, 2021, 217B: 108916
|
22 |
Lii D F, Huang J L, Chang S T. The mechanical properties of AlN/Al composites manufactured by squeeze casting [J]. J. Eur. Ceram. Soc., 2002, 22: 253
doi: 10.1016/S0955-2219(01)00255-2
|
23 |
Zhang Z M, Fan G L, Tan Z Q, et al. Towards the strength-ductility synergy of Al2O3/Al composite through the design of roughened interface [J]. Composites, 2021, 224B: 109251
|
24 |
Chen Y Y, Nie J F, Wang F, et al. Revealing hetero-deformation induced (HDI) stress strengthening effect in laminated Al-(TiB2 + TiC)p/6063 composites prepared by accumulative roll bonding [J]. J. Alloys Compd., 2020, 815: 152285
doi: 10.1016/j.jallcom.2019.152285
|
25 |
Zhou W W, Zhou Z X, Fan Y C, et al. Significant strengthening effect in few-layered MXene-reinforced Al matrix composites [J]. Mater. Res. Lett., 2021, 9: 148
doi: 10.1080/21663831.2020.1861120
|
26 |
Brandenburg J E, Barrales-Mora L A, Molodov D A, et al. Motion of a grain boundary facet in aluminum [J]. Acta Mater., 2013, 61: 5518
doi: 10.1016/j.actamat.2013.05.043
|
27 |
Zhou W W, Cai B, Li W J, et al. Heat-resistant Al-0.2Sc-0.04Zr electrical conductor [J]. Mater. Sci. Eng., 2012, A552: 353
|
28 |
Zhao B B, Zhan Y Z, Tang H Q. High-temperature properties and microstructural evolution of Al-Cu-Mn-RE (La/Ce) alloy designed through thermodynamic calculation [J]. Mater. Sci. Eng., 2019, A758: 7
|
29 |
Wang W Y, Pan Q L, Lin G, et al. Internal friction and heat resistance of Al, Al-Ce, Al-Ce-Zr and Al-Ce-(Sc)-(Y) aluminum alloys with high strength and high electrical conductivity [J]. J. Mater. Res. Technol., 2021, 14: 1255
doi: 10.1016/j.jmrt.2021.07.054
|
30 |
Školáková A, Novák P, Mejzlíková L, et al. Structure and mechanical properties of Al-Cu-Fe-X alloys with excellent thermal stability [J]. Materials, 2017, 10: 1269
doi: 10.3390/ma10111269
|
31 |
Lai J, Zhang Z, Chen X G. The thermal stability of mechanical properties of Al-B4C composites alloyed with Sc and Zr at elevated temperatures [J]. Mater. Sci. Eng., 2012, A532: 462
|
32 |
Ding H, Xiao Y K, Bian Z Y, et al. Design, microstructure and thermal stability of a novel heat-resistant Al-Fe-Ni alloy manufactured by selective laser melting [J]. J. Alloys Compd., 2021, 885: 160949
doi: 10.1016/j.jallcom.2021.160949
|
33 |
Deng J W, Chen C, Liu X C, et al. A high-strength heat-resistant Al-5.7Ni eutectic alloy with spherical Al3Ni nano-particles by selective laser melting [J]. Scr. Mater., 2021, 203: 114034
doi: 10.1016/j.scriptamat.2021.114034
|
34 |
Chen J L, Liao H C, Wu Y N, et al. Contributions to high temperature strengthening from three types of heat-resistant phases formed during solidification, solution treatment and ageing treatment of Al-Cu-Mn-Ni alloys respectively [J]. Mater. Sci. Eng., 2020, A772: 138819
|
35 |
Balducci E, Ceschini L, Messieri S, et al. Thermal stability of the lightweight 2099 Al-Cu-Li alloy: Tensile tests and microstructural investigations after overaging [J]. Mater. Des., 2017, 119: 54
doi: 10.1016/j.matdes.2017.01.058
|
36 |
Pandey V, Chattopadhyay K, Srinivas N C S, et al. Thermal and microstructural stability of nanostructured surface of the aluminium alloy 7075 [J]. Mater. Charact., 2019, 151: 242
doi: 10.1016/j.matchar.2019.03.016
|
37 |
Liang S S, Wen S P, Wu X L, et al. The synergetic effect of Si and Sc on the thermal stability of the precipitates in AlCuMg alloy [J]. Mater. Sci. Eng., 2020, A783: 139319
|
38 |
Li M, Wang Y F, Gao H Y, et al. Thermally stable microstructure and mechanical properties of graphene reinforced aluminum matrix composites at elevated temperature [J]. J. Mater. Res. Technol., 2020, 9: 13230
doi: 10.1016/j.jmrt.2020.09.068
|
39 |
Cavojsky M, Balog M, Dvorak J, et al. Microstructure and properties of extruded rapidly solidified AlCr4.7Fe1.1Si0.3 (at.%) alloys [J]. Mater. Sci. Eng., 2012, A549: 233
|
40 |
Balog M, Hu T, Krizik P, et al. On the thermal stability of ultrafine-grained Al stabilized by in-situ amorphous Al2O3 network [J]. Mater. Sci. Eng., 2015, A648: 61
|
41 |
Nersisyan H H, Lee J H, Kim H Y, et al. Morphological diversity of AlN nano- and microstructures: Synthesis, growth orientations and theoretical modelling [J]. Int. Mater. Rev., 2020, 65: 323
doi: 10.1080/09506608.2019.1641651
|
42 |
Eivani A R, Valipour S, Ahmed H, et al. Effect of the size distribution of nanoscale dispersed particles on the zener drag pressure [J]. Metall. Mater. Trans., 2011, 42A: 1109
|
43 |
Xie Y M, Meng X C, Huang Y X, et al. Deformation-driven metallurgy of graphene nanoplatelets reinforced aluminum composite for the balance between strength and ductility [J]. Composites, 2019, 177B: 107413
|
44 |
Jang D, Atzmon M. Grain-boundary relaxation and its effect on plasticity in nanocrystalline Fe [J]. J. Appl. Phys., 2006, 99: 083504
|
45 |
Ranganathan S, Divakar R, Raghunathan V S. Interface structures in nanocrystalline materials [J]. Scr. Mater., 2001, 44: 1169
doi: 10.1016/S1359-6462(01)00678-9
|
46 |
Wu X L, Zhu Y T. Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries [J]. Appl. Phys. Lett., 2006, 89: 031922
|
47 |
Rupert T J, Trelewicz J R, Schuh C A. Grain boundary relaxation strengthening of nanocrystalline Ni-W alloys [J]. J. Mater. Res., 2012, 27: 1285
doi: 10.1557/jmr.2012.55
|
48 |
Gubicza J. Annealing-induced hardening in ultrafine-grained and nanocrystalline materials [J]. Adv. Eng. Mater., 2020, 22: 1900507
doi: 10.1002/adem.201900507
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|