Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (11): 1497-1508    DOI: 10.11900/0412.1961.2022.00305
Research paper Current Issue | Archive | Adv Search |
Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite
NIE Jinfeng1(), WU Yuli1, XIE Kewei2, LIU Xiangfa2()
1.Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
Cite this article: 

NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite. Acta Metall Sin, 2022, 58(11): 1497-1508.

Download:  HTML  PDF(4092KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Efforts to develop high-strength and heat-resistant Al alloys have been ongoing to reduce the weight of automobiles and achieve transportation with low emissions. Traditional heat-resistant Al alloys are difficult to use at temperatures higher than 300oC because of the strength loss from precipitate coarsening behavior. This study examined the microstructure, mechanical properties, and thermal stability of a heterostructured Al nanocomposite reinforced by AlN nanoparticles using FESEM, TEM, EBSD, tensile test, and thermal exposure experiments. The heterogeneous lamellar structure of Al-AlN nanocomposite was composed of alternate distributed particle-rich and particle-free zones. Ultrafine Al grains formed in the particle-rich zone, whereas coarse Al grains formed in the particle-free zone. The mechanical tests of the Al-AlN nanocomposite showed no visible microhardness or loss of tensile strength after severe thermal exposure at 500oC for up to 100 h. The outstanding thermal stability and tensile strength combination were much better than the data in the literature. It is believed that the intergranular AlN nanoparticles pinned the Al grain boundaries and contributed to the superior thermal stability and strength. Furthermore, an abnormal increase in strength at the initial stage of the thermal exposure tests was revealed. A thermal exposure temperature resulted in a greater increase in strength and hardness, which was rationally interpreted in view of grain boundary relaxation strengthening.

Key words:  aluminum matrix composite      heterostructure      mechanical property      thermal stability     
Received:  20 June 2022     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51731007);National Natural Science Foundation of China(52071179);National Natural Science Foundation of China(52271033);Fundamental Research Funds for the Central Universities(N30920021160);Natural Science Foundation of Jiangsu Province(BK20221493)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00305     OR     https://www.ams.org.cn/EN/Y2022/V58/I11/1497

Fig.1  SEM images of Al-8.2AlN heterostructured nanocomposites on the longitudinal section (a) and cross section (b); SEM image of AlN particles at a higher magnification (c); EDS analysis for point A in Fig.1c (d) (Insets in Figs.1a and b schematically showing the selected positions for observation, inset in Fig.1d showing the statistics of the AlN particle size)
Fig.2  TEM images of Al-AlN heterostructured nanocomposites on longitudinal section
(a-c) Al matrix grains (red arrows) and the distribution of AlN nanoparticles (yellow arrows)
(d) interaction of AlN particles with dislocations (blue arrow) in the matrix
Fig.3  HRTEM characterizations of AlN and the AlN/Al matrix interface structure
(a, b) HRTEM images of AlN particles
(c) HRTEM image of the green square in Fig.3b showing the metallurgical atomic bonding and matching between AlN and Al matrix (d-f) HRTEM images of the red square and yellow squares in Fig.3b showing the atomic plane spacing of the Al matrix and the AlN nanoparticles (d—interplanar spacing)
Fig.4  Inverse pole figures (a, b) and grain size distributions (c, d) for the heterostructured Al-AlN nanocomposites before (a, c) and after (b, d) thermal exposure treatment at 500oC for 100 h
Fig.5  Recrystallization proportions (a, b) and their volume fraction variations (c) and misorientation angle variations (d) for the heterostructured Al-AlN nanocomposites before (a) and after (b) thermal exposure treatment at 500oC for 100 h (Fully recrystallized grains are shown in blue, substructured grains in yellow, and severely deformed grains in red)
Fig.6  Mechanical properties of heterostructured Al-AlN nanocomposite before and after thermal exposure
(a) variation of microhardness versus the thermal exposure time at 350oC
(b) engineering stress-strain curves after exposure at 500oC for different holding time
(c) ultimate tensile strength (UTS), yield strength (YS), and elongation (δ) variation curves of the composites with the exposure time
StateYS / MPaUTS / MPaδ / %
As-received232 ± 13299 ± 2012.9 ± 1.71
500oC, 5 h290 ± 4350 ± 63.3 ± 0.70
500oC, 10 h315 ± 10390 ± 102.2 ± 0.46
500oC, 15 h259 ± 8323 ± 116.9 ± 0.88
500oC, 20 h248 ± 5312 ± 66.6 ± 0.17
500oC, 50 h236 ± 9298 ± 138.1 ± 1.79
500oC, 100 h251 ± 10321 ± 116.9 ± 0.75
Table 1  Mechanical properties of the heterostructured Al-AlN nanocomposite before and after thermal exposure tests at 500oC for different holding time
Fig.7  Schematic of lamellar heterostructure of the heterostructured Al-AlN nanocomposites (UFG—ultrafine grain, ECG—elongated coarse grain, PRD—particle rich domains, PLD—particle lean domains) (a) and thermal stable temperature versus tensile strength for current Al-AlN nanocomposite and the comparison with other aluminum alloys[27-40] (b)
1 Han T L, Liu E Z, Li J J, et al. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study [J]. J. Mater. Sci. Technol., 2020, 46: 21
doi: 10.1016/j.jmst.2019.09.045
2 Liu Y F, Wang F, Cao Y, et al. Unique defect evolution during the plastic deformation of a metal matrix composite [J]. Scr. Mater., 2019, 162: 316
doi: 10.1016/j.scriptamat.2018.11.038
3 Bi S, Li Z C, Sun H X, et al. Microstructure and mechanical properties of carbon nanotubes-reinforced 7055Al composites fabricated by high-energy ball milling and powder metallurgy processing [J]. Acta Metall. Sin., 2021, 57: 71
毕 胜, 李泽琛, 孙海霞 等. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能 [J]. 金属学报, 2021, 57: 71
4 Nie J F, Chen Y Y, Chen X, et al. Stiff, strong and ductile heterostructured aluminum composites reinforced with oriented nanoplatelets [J]. Scr. Mater., 2020, 189: 140
doi: 10.1016/j.scriptamat.2020.08.017
5 Tao R, Zhao Y T, Chen G, et al. Microstructure and properties of in-situ ZrB2 np/AA6111 composites synthesized under an electromagnetic field [J]. Acta Metall. Sin., 2019, 55: 160
陶 然, 赵玉涛, 陈 刚 等. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究 [J]. 金属学报, 2019, 55: 160
6 Qiu F, Tong H T, Shen P, et al. Overview: SiC/Al interface reaction and interface structure evolution mechanism [J]. Acta Metall. Sin., 2019, 55: 87
邱 丰, 佟昊天, 沈 平 等. 综述: SiC/Al界面反应与界面结构演变规律及机制 [J]. 金属学报, 2019, 55: 87
7 Ma X, Zhao Y F, Tian W J, et al. A novel Al matrix composite reinforced by nano-AlNp network [J]. Sci. Rep., 2016, 6: 34919
doi: 10.1038/srep34919 pmid: 27721417
8 Nie J F, Lu F H, Huang Z W, et al. Improving the high-temperature ductility of Al composites by tailoring the nanoparticle network [J]. Materialia, 2020, 9: 100523
doi: 10.1016/j.mtla.2019.100523
9 Zhang S Q, Zhang Y C, Chen M, et al. Characterization of mechanical properties of aluminum cast alloy at elevated temperature [J]. Appl. Math. Mech., 2018, 39: 967
doi: 10.1007/s10483-018-2349-8
10 Sun M, Zhuang J W, Deng H L, et al. Reviews on the study of aluminum alloys and aluminum matrix composites with high-temperature anti-creep behavior [J]. Mater. Rep., 2021, 35: 11137
孙 茗, 庄景巍, 邓海亮 等. 高温抗蠕变铝合金及铝基复合材料研究进展 [J]. 材料导报, 2021, 35: 11137
11 Sui Y D, Wang Q D, Wang G L, et al. Effects of Sr content on the microstructure and mechanical properties of cast Al-12Si-4Cu-2Ni-0.8Mg alloys [J]. J. Alloys Compd., 2015, 622: 572
doi: 10.1016/j.jallcom.2014.10.148
12 Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy [J]. Acta Metall. Sin., 2021, 57: 129
高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略 [J]. 金属学报, 2021, 57: 129
13 Gao Y H, Guan P F, Su R, et al. Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance [J]. Mater. Res. Lett., 2020, 8: 446
doi: 10.1080/21663831.2020.1799447
14 Gong D, Jiang L T, Guan J T, et al. Stable second phase: The key to high-temperature creep performance of particle reinforced aluminum matrix composite [J]. Mater. Sci. Eng., 2020, A770: 138551
15 Tang F, Liao C P, Ahn B, et al. Thermal stability in nanostructured Al-5083/SiCp composites fabricated by cryomilling [J]. Powder Metall., 2007, 50: 307
doi: 10.1179/174329007X189630
16 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
17 Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2020, 9: 1
doi: 10.1080/21663831.2020.1796836
18 Estrin Y, Beygelzimer Y, Kulagin R, et al. Architecturing materials at mesoscale: Some current trends [J]. Mater. Res. Lett., 2021, 9: 399
doi: 10.1080/21663831.2021.1961908
19 Geng R, Zhao Q L, Qiu F, et al. Simultaneously increased strength and ductility via the hierarchically heterogeneous structure of Al-Mg-Si alloys/nanocomposite [J]. Mater. Res. Lett., 2020, 8: 225
doi: 10.1080/21663831.2020.1744759
20 Nie J F, Liu Y F, Wang F, et al. Key roles of particles in grain refinement and material strengthening for an aluminum matrix composite [J]. Mater. Sci. Eng., 2021, A801: 140414
21 Zhang Z M, Fan G L, Tan Z Q, et al. Bioinspired multiscale Al2O3-rGO/Al laminated composites with superior mechanical properties [J]. Composites, 2021, 217B: 108916
22 Lii D F, Huang J L, Chang S T. The mechanical properties of AlN/Al composites manufactured by squeeze casting [J]. J. Eur. Ceram. Soc., 2002, 22: 253
doi: 10.1016/S0955-2219(01)00255-2
23 Zhang Z M, Fan G L, Tan Z Q, et al. Towards the strength-ductility synergy of Al2O3/Al composite through the design of roughened interface [J]. Composites, 2021, 224B: 109251
24 Chen Y Y, Nie J F, Wang F, et al. Revealing hetero-deformation induced (HDI) stress strengthening effect in laminated Al-(TiB2 + TiC)p/6063 composites prepared by accumulative roll bonding [J]. J. Alloys Compd., 2020, 815: 152285
doi: 10.1016/j.jallcom.2019.152285
25 Zhou W W, Zhou Z X, Fan Y C, et al. Significant strengthening effect in few-layered MXene-reinforced Al matrix composites [J]. Mater. Res. Lett., 2021, 9: 148
doi: 10.1080/21663831.2020.1861120
26 Brandenburg J E, Barrales-Mora L A, Molodov D A, et al. Motion of a grain boundary facet in aluminum [J]. Acta Mater., 2013, 61: 5518
doi: 10.1016/j.actamat.2013.05.043
27 Zhou W W, Cai B, Li W J, et al. Heat-resistant Al-0.2Sc-0.04Zr electrical conductor [J]. Mater. Sci. Eng., 2012, A552: 353
28 Zhao B B, Zhan Y Z, Tang H Q. High-temperature properties and microstructural evolution of Al-Cu-Mn-RE (La/Ce) alloy designed through thermodynamic calculation [J]. Mater. Sci. Eng., 2019, A758: 7
29 Wang W Y, Pan Q L, Lin G, et al. Internal friction and heat resistance of Al, Al-Ce, Al-Ce-Zr and Al-Ce-(Sc)-(Y) aluminum alloys with high strength and high electrical conductivity [J]. J. Mater. Res. Technol., 2021, 14: 1255
doi: 10.1016/j.jmrt.2021.07.054
30 Školáková A, Novák P, Mejzlíková L, et al. Structure and mechanical properties of Al-Cu-Fe-X alloys with excellent thermal stability [J]. Materials, 2017, 10: 1269
doi: 10.3390/ma10111269
31 Lai J, Zhang Z, Chen X G. The thermal stability of mechanical properties of Al-B4C composites alloyed with Sc and Zr at elevated temperatures [J]. Mater. Sci. Eng., 2012, A532: 462
32 Ding H, Xiao Y K, Bian Z Y, et al. Design, microstructure and thermal stability of a novel heat-resistant Al-Fe-Ni alloy manufactured by selective laser melting [J]. J. Alloys Compd., 2021, 885: 160949
doi: 10.1016/j.jallcom.2021.160949
33 Deng J W, Chen C, Liu X C, et al. A high-strength heat-resistant Al-5.7Ni eutectic alloy with spherical Al3Ni nano-particles by selective laser melting [J]. Scr. Mater., 2021, 203: 114034
doi: 10.1016/j.scriptamat.2021.114034
34 Chen J L, Liao H C, Wu Y N, et al. Contributions to high temperature strengthening from three types of heat-resistant phases formed during solidification, solution treatment and ageing treatment of Al-Cu-Mn-Ni alloys respectively [J]. Mater. Sci. Eng., 2020, A772: 138819
35 Balducci E, Ceschini L, Messieri S, et al. Thermal stability of the lightweight 2099 Al-Cu-Li alloy: Tensile tests and microstructural investigations after overaging [J]. Mater. Des., 2017, 119: 54
doi: 10.1016/j.matdes.2017.01.058
36 Pandey V, Chattopadhyay K, Srinivas N C S, et al. Thermal and microstructural stability of nanostructured surface of the aluminium alloy 7075 [J]. Mater. Charact., 2019, 151: 242
doi: 10.1016/j.matchar.2019.03.016
37 Liang S S, Wen S P, Wu X L, et al. The synergetic effect of Si and Sc on the thermal stability of the precipitates in AlCuMg alloy [J]. Mater. Sci. Eng., 2020, A783: 139319
38 Li M, Wang Y F, Gao H Y, et al. Thermally stable microstructure and mechanical properties of graphene reinforced aluminum matrix composites at elevated temperature [J]. J. Mater. Res. Technol., 2020, 9: 13230
doi: 10.1016/j.jmrt.2020.09.068
39 Cavojsky M, Balog M, Dvorak J, et al. Microstructure and properties of extruded rapidly solidified AlCr4.7Fe1.1Si0.3 (at.%) alloys [J]. Mater. Sci. Eng., 2012, A549: 233
40 Balog M, Hu T, Krizik P, et al. On the thermal stability of ultrafine-grained Al stabilized by in-situ amorphous Al2O3 network [J]. Mater. Sci. Eng., 2015, A648: 61
41 Nersisyan H H, Lee J H, Kim H Y, et al. Morphological diversity of AlN nano- and microstructures: Synthesis, growth orientations and theoretical modelling [J]. Int. Mater. Rev., 2020, 65: 323
doi: 10.1080/09506608.2019.1641651
42 Eivani A R, Valipour S, Ahmed H, et al. Effect of the size distribution of nanoscale dispersed particles on the zener drag pressure [J]. Metall. Mater. Trans., 2011, 42A: 1109
43 Xie Y M, Meng X C, Huang Y X, et al. Deformation-driven metallurgy of graphene nanoplatelets reinforced aluminum composite for the balance between strength and ductility [J]. Composites, 2019, 177B: 107413
44 Jang D, Atzmon M. Grain-boundary relaxation and its effect on plasticity in nanocrystalline Fe [J]. J. Appl. Phys., 2006, 99: 083504
45 Ranganathan S, Divakar R, Raghunathan V S. Interface structures in nanocrystalline materials [J]. Scr. Mater., 2001, 44: 1169
doi: 10.1016/S1359-6462(01)00678-9
46 Wu X L, Zhu Y T. Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries [J]. Appl. Phys. Lett., 2006, 89: 031922
47 Rupert T J, Trelewicz J R, Schuh C A. Grain boundary relaxation strengthening of nanocrystalline Ni-W alloys [J]. J. Mater. Res., 2012, 27: 1285
doi: 10.1557/jmr.2012.55
48 Gubicza J. Annealing-induced hardening in ultrafine-grained and nanocrystalline materials [J]. Adv. Eng. Mater., 2020, 22: 1900507
doi: 10.1002/adem.201900507
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
No Suggested Reading articles found!