Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (9): 1109-1124    DOI: 10.11900/0412.1961.2023.00140
Overview Current Issue | Archive | Adv Search |
Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys
ZHANG Jian1(), WANG Li1, XIE Guang1, WANG Dong1, SHEN Jian1, LU Yuzhang1, HUANG Yaqi1, LI Yawei1,2
1Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys. Acta Metall Sin, 2023, 59(9): 1109-1124.

Download:  HTML  PDF(1709KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Single crystal Ni-based superalloys are key materials used in the hot section of aeroengines and industrial gas turbines. In service, single crystal blades face harsh environments, including high temperatures, complex stresses, oxidation and hot corrosion. Therefore, they must meet strict technical specifications, such as impurity, defects and dimensional control. Single crystal components should be manufactured using complex technologies within a highly narrow processing window. The present paper reviews recent progress in the research and development of alloy design, microstructure and property evolution and characterization, evaluation in near-service conditions, and single crystal manufacture. Further, the development of “next generation” high-temperature structural materials, such as refractory high-entropy alloys, is briefly discussed.

Key words:  single crystal superalloy      alloy design      mechanical property      directional solidification     
Received:  03 April 2023     
ZTFLH:  TG132.3  
Fund: National Key Research and Development Program of China(2021YFB3702900);National Natural Science Foundation of China(5227-1042);National Natural Science Foundation of China(52071219);National Natural Science Foundation of China(52201151);National Natural Science Foundation of China(U2141206);National Natural Science Foundation of China(U2241283);National Science and Technology Major Project(P2022-C-IV-001-001);National Science and Technology Major Project(P2021-AB-IV-001-002);National Science and Technology Major Project(J2019-IV-0006-0074);National Science and Technology Major Project(J2019-VI-0010-0124);Directional Institutionalized Scientific Research Platform Relies on China Spallation Neutron Source of Chinese Academy of Sciences, International Partnership Program of Chinese Academy of Sciences(172GJHZ2022095FN);National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology Harbin(JCKYS2022603C008)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00140     OR     https://www.ams.org.cn/EN/Y2023/V59/I9/1109

Fig.1  Specific creep rupture life of different single crystal superalloys (P—Larson-Miller parameter, T—temperature (K), t—time, SX—single crystal superalloy)[3-10]
Fig.2  Schematics of temperature dependence of creep deformation mechanisms for single crystal superalloys (a-c) at medium temperature, the main deformation mechanism is matrix dislocation reaction (a), and at higher stress, dislocation dissociation is also activated (b), both mechanisms in Figs.2a and b lead to the formation of stacking faults (SFs) (c) (σ—applied stress) (d-f) at high temperature, the applied stress and misfit stress impel matrix dislocation reaction at γ/γ' interface during primary creep, and then dislocation networks generate (d), as creep in progress, high local stress and interaction of interfacial dislocations result in the formation of superdislocations, including a<110> type and a<100> type (e), the former is antiphase boundary (APB) coupled with dislocation pair, and the latter is dislocation pair with non-compact core originating from interfacial dislocations. In latter stage, γ'-raft cutting by superdislocations occurs (f)
DS processAlloyPDAS / μmVolume fraction of porosity / %Average porosity size / μm2
HRSCMSX-4333-3840.072-0.10218.9
FBCCMSX-4248-2750.022-0.0458.8
LMCDD331800.026.8
Table 1  Microstructures of single crystal castings obtained by high rate solidification (HRS), fluidized bed cooling (FBC), and liquid metal cooling (LMC)
Fig.3  Simulation of the temperature field during LMC process
Fig.4  Temperature dependence of compressive (a) and tensile (b) yield strengths of high-entropy alloys and superalloys[176~193] (Solid and hollow symbols in Fig.4a indicate single-phase and multi-phase alloys, respectively)
1 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
2 Yokokawa T, Harada H, Kawagishi K, et al. Advanced alloy design program and improvement of sixth-generation Ni-base single crystal superalloy TMS-238 [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 122
3 Petrushin N V, Elyutin E S, Visik E M, et al. Development of a single-crystal fifth-generation nickel superalloy [J]. Russ. Metall., 2017, 2017: 936
doi: 10.1134/S0036029517110118
4 Antonov S, Zheng Y F, Sosa J M, et al. Plasticity assisted redistribution of solutes leading to topological inversion during creep of superalloys [J]. Scr. Mater., 2020, 186: 287
doi: 10.1016/j.scriptamat.2020.05.004
5 Walston W S, O'Hara K S, Ross E W, et al. René N6: Third generation single crystal superalloy [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 27
6 Harris K, Erickson G L, Sikkenga S L, et al. Development of the rhenium containing superalloys CMSX-4® & CM 186 LC® for single crystal blade and directionally solidified vane applications in advanced turbine engines [A]. Superalloys 1992 [C]. Warrendale, PA: TMS, 1992: 297
7 Hino T, Kobayashi T, Koizumi Y, et al. Development of a new single crystal superalloy for industrial gas turbines [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 729
8 Harada H. High temperature materials for gas turbines: The present and future [A]. Proceedings of the International Gas Turbine Congress 2003 [C]. Tokyo, Japan, 2003: 1
9 Koizumi Y, Kobayashi T, Yokokawa T, et al. Development of next-generation Ni-base single crystal superalloys [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 35
10 Koizumi Y, Kawagishi K, Yokokawa T, et al. Hot corrosion and creep properties of Ni-base single-crystal superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 747
11 Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
12 van Sluytman J S, Moceri C J, Pollock T M. A Pt-modified Ni-base superalloy with high temperature precipitate stability [J]. Mater. Sci. Eng., 2015, A639: 747
13 Rame J, Utada S, Ormastroni L M B, et al. Platinum-containing new generation nickel-based superalloy for single crystalline applications [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 71
14 Luo L, Ru Y, Ma Y, et al. Design for 1200oC creep properties of Ni-based single crystal superalloys: Effect of γ'-forming elements and its microscopic mechanism [J]. Mater. Sci. Eng., 2022, A832: 142494
15 Ru Y, Hu B, Zhao W Y, et al. Topologically inverse microstructure in single-crystal superalloys: Microstructural stability and properties at ultrahigh temperature [J]. Mater. Res. Lett., 2021, 9: 497
doi: 10.1080/21663831.2021.1982785
16 Cheng Y, Zhao X B, Xia W S, et al. Effects of Mo addition on microstructure of a 4th generation Ni-based single crystal superalloy [J]. Prog. Nat. Sci.: Mater. Int., 2022, 32: 745
doi: 10.1016/j.pnsc.2022.10.001
17 Pan Q H, Zhao X B, Yue Q Z, et al. Effects of cobalt on solidification characteristics and as-cast microstructure of an advanced nickel-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2022, 20: 3074
18 Rame J, Caron P, Locq D, et al. Development of AGAT, a third-generation nickel-based superalloy for single crystal turbine blade applications [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 31
19 Zhao Y S, Zhang J, Luo Y S, et al. Improvement of grain boundary tolerance by minor additions of Hf and B in a second generation single crystal superalloy [J]. Acta Mater., 2019, 176: 109
doi: 10.1016/j.actamat.2019.06.054
20 Pedraza F, Troncy R, Pasquet A, et al. Critical hafnium content for extended lifetime of AM1 single crystal superalloy [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 781
21 Horie T, Kawagishi K, Takata Y, et al. Creep durability of Ni-base single crystal superalloy containing Pb impurity [J]. Metall. Mater. Trans., 2022, 53A: 2627
22 Zhang Z P. Effect of Re and ppm level S addition on the oxidation and hot corrosion behavior of Ni-base single crystal superalloys [D]. Shenyang: Shenyang University of Technology, 2019
张宗鹏. Re和ppm级S对镍基单晶高温合金氧化和热腐蚀行为的影响 [D]. 沈阳: 沈阳工业大学, 2019
23 Zhan X, Wang D, Zhang Z P, et al. Effect of trace sulfur on the hot corrosion resistance of Ni-base single crystal superalloy [J]. Corros. Sci., under review
24 Kawagishi K, Tabata C, Sugiyama T, et al. Suppression of sulfur segregation at scale/substrate interface for sixth-generation single-crystal Ni-base superalloy [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 798
25 Liu P, Huang H Y, Antonov S, et al. Machine learning assisted design of γ'-strengthened Co-base superalloys with multi-performance optimization [J]. npj Comput. Mater., 2020, 6: 62
doi: 10.1038/s41524-020-0334-5
26 Müller M, Schleifer F, Fleck M, et al. Consistent automatic evaluation of γ/γ' Ni-base superalloy microstructure parameters from micrographs and simulation data [R]. Bamberg, Bavaria: DGM, 2022
27 Forti M D, Burakovskaya A, Drautz R, et al. Machine learning TCP phases with domain knowledge of the interatomic bond [R]. Bamberg, Bavaria: DGM, 2022
28 Thome P, Richter A, Scholz F, et al. 3D dendrite growth in Ni-base SXs analyzed using microstructure informatics [R]. Bamberg, Bavaria: DGM, 2022
29 Liu Y, Wu J M, Wang Z C, et al. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning [J]. Acta Mater., 2020, 195: 454
doi: 10.1016/j.actamat.2020.05.001
30 Xia W S, Zhao X B, Yue L, et al. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: A review [J]. J. Alloys Compd., 2020, 819: 152954
doi: 10.1016/j.jallcom.2019.152954
31 Li Y F, Wang L, Zhang G, et al. Creep anisotropy of a 3rd generation nickel-base single crystal superalloy at 850oC [J]. Mater. Sci. Eng., 2019, A760: 26
32 Heep L, Bürger D, Bonnekoh C, et al. The effect of deviations from precise [001] tensile direction on creep of Ni-base single crystal superalloys [J]. Scr. Mater., 2022, 207: 114274
doi: 10.1016/j.scriptamat.2021.114274
33 Liu H, Wang X M, Liu P Y, et al. Experimental and chemo-mechanical analysis of hot corrosion influence on creep properties of DD6 single crystal superalloy in molten NaCl salt [J]. Eng. Fract. Mech., 2022, 260: 108194
doi: 10.1016/j.engfracmech.2021.108194
34 Zhang D X, He J Y, Liang J W. Anisotropic creep fracture mechanism and microstructural evolution in nickel-based single crystal specimen with a center film hole [J]. Theor. Appl. Fract. Mech., 2020, 108: 102680
doi: 10.1016/j.tafmec.2020.102680
35 Pei H Q, Wang J J, Li Z, et al. Oxidation behavior of recast layer of air-film hole machined by EDM technology of Ni-based single crystal blade and its effect on creep strength [J]. Surf. Coat. Technol., 2021, 419: 127285
doi: 10.1016/j.surfcoat.2021.127285
36 Epishin A I, Fedelich B, Viguier B, et al. Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150oC and 1288oC [J]. Mater. Sci. Eng., 2021, A825: 141880
37 Qi D Q, Wang L, Zhao P, et al. Facilitating effect of interfacial grooves on the rafting of nickel-based single crystal superalloy at high temperature [J]. Scr. Mater., 2019, 167: 71
doi: 10.1016/j.scriptamat.2019.04.001
38 Li Y W, Wang L, He Y F, et al. Role of interfacial dislocation networks during secondary creep at elevated temperatures in a single crystal Ni-based superalloy [J]. Scr. Mater., 2022, 217: 114769
doi: 10.1016/j.scriptamat.2022.114769
39 Li Y M, Wang X G, Tan Z H, et al. On dislocation networks and superdislocations in Re-containing nickel-based SX superalloy under different creep conditions [J]. Intermetallics, 2022, 148: 107646
doi: 10.1016/j.intermet.2022.107646
40 Li Y W, Wang L, Zhang G, et al. On the role of topological inversion and dislocation structures during tertiary creep at elevated temperatures for a Ni-based single crystal superalloy [J]. Mater. Sci. Eng., 2021, A809: 140982
41 Ormastroni L M B, Utada S, Rame J, et al. Tensile, low cycle fatigue, and very high cycle fatigue characterizations of advanced single crystal nickel-based superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 341
42 Tang Z H, Wang K D, Dong X, et al. Effect of warm laser shock peening on the low-cycle fatigue behavior of DD6 nickel-based single-crystal superalloy [J]. J. Mater. Eng. Perform., 2021, 30: 2930
doi: 10.1007/s11665-021-05508-7
43 Zhang M, Zhao Y S, Guo Y Y, et al. Effect of overheating events on microstructure and low-cycle fatigue properties of a nickel-based single-crystal superalloy [J]. Metall. Mater. Trans., 2022, 53A: 2214
44 Yang X G, Tan L, Sui T X, et al. Low cycle fatigue behaviour of a single crystal Ni-based superalloy with a central hole: Effect of inhomogeneous rafting microstructure [J]. Int. J. Fatigue, 2021, 153: 106467
doi: 10.1016/j.ijfatigue.2021.106467
45 Zhang B, Wang R Q, Hu D Y, et al. Damage-based low-cycle fatigue lifetime prediction of nickel-based single-crystal superalloy considering anisotropy and dwell types [J]. Fatigue Fract. Eng. Mater. Struct., 2020, 43: 2956
doi: 10.1111/ffe.v43.12
46 Fan Y S, Yang X G, Tan L, et al. Fatigue life evaluation for notched single-crystal Ni-based superalloys considering inhomogeneous rafting microstructure [J]. Int. J. Fatigue, 2023, 166: 107255
doi: 10.1016/j.ijfatigue.2022.107255
47 Hu B, Pei Y L, Gong S K, et al. Orientation dependence of high cycle fatigue behavior of a<111> oriented single-crystal nickel-based superalloy [J]. Metals, 2021, 11: 1248
doi: 10.3390/met11081248
48 Dong J M, Li J R. Effect of etching on fatigue properties of DD6 single-crystal superalloy [J]. J. Mater. Eng. Perform., 2020, 29: 3195
doi: 10.1007/s11665-020-04865-z
49 Zhang Z J, Zhang M Q. Effect of different drilling techniques on high-cycle fatigue behavior of nickel-based single-crystal superalloy with film cooling hole [J]. High Temp. Mater. Proc., 2021, 40: 121
doi: 10.1515/htmp-2020-0072
50 Cervellon A, Hémery S, Kürnsteiner P, et al. Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature [J]. Acta Mater., 2020, 188: 131
doi: 10.1016/j.actamat.2020.02.012
51 Zhao Z, Li Q, Zhang F, et al. Transition from internal to surface crack initiation of a single-crystal superalloy in the very-high-cycle fatigue regime at 1100oC [J]. Int. J. Fatigue, 2021, 150: 106343
doi: 10.1016/j.ijfatigue.2021.106343
52 Li Y W, Wang D, He Y F, et al. High temperature VHCF of a 3rd generation Ni-based single crystal superalloy with different casting pore sizes [J]. Int. J. Fatigue, 2023, 175: 107804
doi: 10.1016/j.ijfatigue.2023.107804
53 Cervellon A, Torbet C J, Pollock T M. Crack initiation anisotropy of Ni-based SX superalloys in the very high cycle fatigue regime [J]. Mater. Sci. Eng., 2021, A825: 141920
54 Ormastroni L M B, Lopez-Galilea I, Ruttert B, et al. On the impact of an integrated HIP treatment on the very high cycle fatigue life of Ni-based SX superalloys [J]. Metall. Mater. Trans., 2023, 54A: 1469
55 Luo C, Yuan H. Anisotropic thermomechanical fatigue of a nickel-base single-crystal superalloy Part I: Effects of crystal orientations and damage mechanisms [J]. Int. J. Fatigue, 2023, 168: 107438
doi: 10.1016/j.ijfatigue.2022.107438
56 Ge Z C, Xie G, Segersäll M, et al. Influence of Ru on the thermomechanical fatigue deformation behavior of a single crystal superalloy [J]. Int. J. Fatigue, 2022, 156: 106634
doi: 10.1016/j.ijfatigue.2021.106634
57 Kontis P, Ge Z C, Xie G, et al. The role of Ru on the deformation mechanism of a single crystal superalloy during thermomechanical fatigue [R]. San Diego: TMS, 2023
58 Sun J Y, Yang S, Yuan H. Assessment of thermo-mechanical fatigue in a nickel-based single-crystal superalloy CMSX-4 accounting for temperature gradient effects [J]. Mater. Sci. Eng., 2021, A809: 140918
59 Yang J J, Jing F L, Yang Z M, et al. Thermomechanical fatigue damage mechanism and life assessment of a single crystal Ni-based superalloy [J]. J. Alloys Compd., 2021, 872: 159578
doi: 10.1016/j.jallcom.2021.159578
60 Smith R, Lancaster R, Jones J, et al. Lifing the effects of crystallographic orientation on the thermo-mechanical fatigue behaviour of a single-crystal superalloy [J]. Materials, 2019, 12: 998
doi: 10.3390/ma12060998
61 Chen Z H, Li X T, Dong T, et al. The mechanism of thermal corrosion fatigue (TCF) on nickel-based single crystal superalloy and the corresponding structure shape effect [J]. Corros. Sci., 2021, 179: 109142
doi: 10.1016/j.corsci.2020.109142
62 Yuan T Y, Dou M, Liu L, et al. Improving high temperature fretting fatigue performance of nickel-based single crystal superalloy by shot peening [J]. Int. J. Fatigue, 2023, 171: 107563
doi: 10.1016/j.ijfatigue.2023.107563
63 Okazaki M, Balavenkatesh R, Yamagishi S, et al. Fretting fatigue life extension for single crystal Ni-based superalloy by applying optimized surface texturing [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 196
64 Reinhart G, Grange D, Abou-Khalil L, et al. Impact of solute flow during directional solidification of a Ni-based alloy: In-situ and real-time X-radiography [J]. Acta Mater., 2020, 194: 68
doi: 10.1016/j.actamat.2020.04.003
65 Perry S J, D'Souza N, Collins D M, et al. An in situ resistance-based method for tracking the temporal evolution of recovery and recrystallization in Ni-base single-crystal superalloy at super-solvus temperatures [J]. Metall. Mater. Trans., 2023, 54A: 1582
66 Niu H Y, Zheng F C, Wang H, et al. An in situ X-ray tomography study on the stress corrosion behavior of a Ni-based single-crystal superalloy [J]. Metall. Mater. Trans., 2023, 54A: 777
67 Liu K L, Wang J S, Wang B, et al. In-situ X-ray tomography investigation of pore damage effects during a tensile test of a Ni-based single crystal superalloy [J]. Mater. Charact., 2021, 177: 111180
doi: 10.1016/j.matchar.2021.111180
68 Huang Y Q, Wang D, Shen J, et al. Initiation of fatigue cracks in a single-crystal nickel-based superalloy at intermediate temperature [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 208
69 Dennstedt A, Lopez-Galilea I, Ruttert B, et al. Combining 2D and 3D characterization techniques for determining effects of HIP rejuvenation after fatigue testing of SX microstructures [J]. Metall. Mater. Trans., 2023, 54A: 1535
70 He Y F, Wang S G, Shen J, et al. Evolution of micro-pores in a single crystal nickel-based superalloy during 980oC creep [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1397
doi: 10.1007/s40195-021-01371-6
71 Sommerschuh M, Wirth J, Merle B, et al. Deformation behaviour of TCP-phases in an additively manufactured Ni-base superalloy studied by 3D X-ray nanotomography and micro-compression tests [R]. Bamberg, Bavaria: DGM, 2022
72 Ren X Y, Lu J X, Zhou J L, et al. In-situ fatigue behavior study of a nickel-based single-crystal superalloy with different orientations [J]. Mater. Sci. Eng., 2022, A855: 143913
73 Duan Q Y, Xue H W, Yang Y H, et al. Study on fracture behavior of nickel-based single crystal superalloy subjected to high temperature fatigue using digital image correlation [J]. Int. J. Fatigue, 2022, 155: 106598
doi: 10.1016/j.ijfatigue.2021.106598
74 Shang Y, Dong Y L, Pei Y L, et al. In situ creep behavior characterization of single crystal superalloy by UV-DIC at 980oC [J]. Coatings, 2019, 9: 598
doi: 10.3390/coatings9100598
75 Ma J Y, Lu J X, Tang L, et al. A novel instrument for investigating the dynamic microstructure evolution of high temperature service materials up to 1150oC in scanning electron microscope [J]. Rev. Sci. Instrum., 2020, 91: 043704
76 Zhou J L, Gao W J, Liu L E, et al. In-situ SEM study on fatigue crack behavior of a nickel-based single crystal alloy at 950oC and 1050oC [J]. Mater. Charact., 2023, 199: 112763
doi: 10.1016/j.matchar.2023.112763
77 Xie H F, Wang J, Wang Z, et al. In situ scanning-digital image correlation for high-temperature deformation measurement of nickel-based single crystal superalloy [J]. Meas. Sci. Technol., 2021, 32: 084008
78 Evangelou A, Soady K A, Lockyer S, et al. On the mechanism of oxidation-fatigue damage at intermediate temperatures in a single crystal Ni-based superalloy [J]. Mater. Sci. Eng., 2019, A742: 648
79 Li Y W, Wang L, Lou L H, et al. Stress effect on rupture mechanisms of a third generation single crystal superalloy crept at ultra-high temperature [J]. Aeron. Manuf. Technol., 2023, 66(4): 48
李亚微, 王 莉, 楼琅洪 等. 应力对第3代单晶高温合金超高温蠕变断裂机制的影响 [J]. 航空制造技术, 2023, 66(4): 48
80 Xiao Q F, Xu Y M, Liu X L, et al. Oxidation-induced recrystallization and damage mechanism of a Ni-based single-crystal superalloy during creep [J]. Mater. Charact., 2023, 195: 112465
doi: 10.1016/j.matchar.2022.112465
81 le Graverend J B, Lee S. Phenomenological modeling of the effect of oxidation on the creep response of Ni-based single-crystal superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 282
82 Brooking L, Gray S, Dawson K, et al. Analysis of combined static load and low temperature hot corrosion induced cracking in CMSX-4 at 550oC [J]. Corros. Sci., 2020, 163: 108293
doi: 10.1016/j.corsci.2019.108293
83 Duarte Martinez F, Morar N I, Kothari M, et al. Investigation into the effects of salt chemistry and SO2 on the crack initiation of CMSX-4 in static loading conditions [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 753
84 Brooking L, Ferguson C, Mason-Flucke J, et al. Measurement and evaluation of co-existing crack propagation in single-crystal superalloys in hot corrosion fatigue environments [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 771
85 Jadon J K S, Singh R, Mahato J K. Creep-fatigue interaction behavior of high temperature alloys: A review [J]. Mater. Today: Proc., 2022, 62: 5351
86 Suzuki S, Sakaguchi M. Fatigue crack retardation associated with creep deformation induced by a tension hold in a single crystal Ni-base superalloy [J]. Scr. Mater., 2020, 178: 346
doi: 10.1016/j.scriptamat.2019.11.058
87 Wang Z, Wu W W, Liang J C, et al. Creep-fatigue interaction behavior of nickel-based single crystal superalloy at high temperature by in-situ SEM observation [J]. Int. J. Fatigue, 2020, 141: 105879
doi: 10.1016/j.ijfatigue.2020.105879
88 Okamoto R, Suzuki S, Sakaguchi M, et al. Evolution of short-term creep strain field near fatigue crack in single crystal Ni-based superalloy measured by digital image correlation [J]. Int. J. Fatigue, 2022, 162: 106952
doi: 10.1016/j.ijfatigue.2022.106952
89 Cervellon A, Yi J Z, Corpace F, et al. Creep, fatigue, and oxidation interactions during high and very high cycle fatigue at elevated temperature of nickel-based single crystal superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 185
90 Yu Z Y, Wang X M, Liang H, et al. Thickness debit effect in Ni-based single crystal superalloys at different stress levels [J]. Int. J. Mech. Sci., 2020, 170: 105357
doi: 10.1016/j.ijmecsci.2019.105357
91 Zhang B, Wang R Q, Liu H Y, et al. Low cycle fatigue lifetime and deformation behaviour prediction of nickel-based single crystal superalloy considering thickness debit effect [J]. Eng. Fract. Mech., 2023, 281: 109076
doi: 10.1016/j.engfracmech.2023.109076
92 Lv J J, Zhao Y S, Wang S, et al. Stress state mechanism of thickness debit effect in creep performances of a Ni-based single crystal superalloy [J]. Int. J. Plast., 2022, 159: 103470
doi: 10.1016/j.ijplas.2022.103470
93 Tao X P, Wang X G, Zhou Y Z, et al. Effect of Pt-Al bond-coat on the tensile deformation and fracture behaviors of a second-generation SX Ni-based superalloy at elevated temperatures [J]. Surf. Coat. Technol., 2020, 389: 125640
doi: 10.1016/j.surfcoat.2020.125640
94 Liu Y, Ru Y, Zhang H, et al. Coating-assisted deterioration mechanism of creep resistance at a nickel-based single-crystal superalloy [J]. Surf. Coat. Technol., 2021, 406: 126668
doi: 10.1016/j.surfcoat.2020.126668
95 Cervellon A, Ormastroni L M B, Hervier Z, et al. Damage mechanisms during very high cycle fatigue of a coated and grit-blasted Ni-based single-crystal superalloy [J]. Int. J. Fatigue, 2021, 142: 105962
doi: 10.1016/j.ijfatigue.2020.105962
96 Huang X, Qi H Y, Li S L, et al. Effect of thermal barrier coatings on the fatigue behavior of a single crystal nickel-based superalloy: Mechanism and lifetime modeling [J]. Surf. Coat. Technol., 2023, 454: 129184
doi: 10.1016/j.surfcoat.2022.129184
97 Shang Y, Zhang H, Hou H Z, et al. High temperature tensile behavior of a thin-walled Ni based single-crystal superalloy with cooling hole: In-situ experiment and finite element calculation [J]. J. Alloys Compd., 2019, 782: 619
doi: 10.1016/j.jallcom.2018.12.232
98 Guo Z X, Song Z Y, Fan J, et al. Experimental and analytical investigation on service life of film cooling structure for single crystal turbine blade [J]. Int. J. Fatigue, 2021, 150: 106318
doi: 10.1016/j.ijfatigue.2021.106318
99 Zhang D X, He J Y, Liang J W. Creep rupture mechanism and microstructure evolution around film-cooling holes in nickel-based single crystal superalloy specimen [J]. Eng. Fract. Mech., 2020, 235: 107187
doi: 10.1016/j.engfracmech.2020.107187
100 Li J G, Meng X B, Liu J D, et al. Common solidification defects and inhibition methods in single crystal superalloy turbine blades [J]. Spec. Cast. Nonferrous Alloys, 2021, 41: 1321
李金国, 孟祥斌, 刘纪德 等. 单晶高温合金涡轮叶片的常见凝固缺陷及控制方法 [J]. 特种铸造及有色合金, 2021, 41: 1321
doi: 10.15980/j.tzzz.2021.11.001
101 Liu L, Sun D J, Huang T W, et al. Directional solidification under high thermal gradient and its application in superalloys processing [J]. Acta Metall. Sin., 2018, 54: 615
doi: 10.11900/0412.1961.2018.00075
刘 林, 孙德建, 黄太文 等. 高梯度定向凝固技术及其在高温合金制备中的应用 [J]. 金属学报, 2018, 54: 615
102 Zeng L, Li J, Xia M G, et al. Directional solidification method for superalloy single crystal blade based on solid-liquid interface steady control [P]. US Pat, 0395896A1, 2022
103 Ma D X, Zhao Y X, Xu W T, et al. Influence of seeding materials on epitaxial growth of single crystal superalloys [J]. Chin. J. Nonferrous Met., 2023, 33: 445
马德新, 赵运兴, 徐维台 等. 高温合金籽晶材料对单晶外延生长的影响 [J]. 中国有色金属学报, 2023, 33: 445
104 Yang S, Zheng S J, Chen H. Effect of seed oxidation on solidification process of Ni-based single crystal superalloy [J]. Foundry, 2021, 70: 819
杨 帅, 郑素杰, 陈 昊. 镍基单晶高温合金籽晶氧化对凝固过程的影响 [J]. 铸造, 2021, 70: 819
105 Liu X G, Rao Y, Liu P Y, et al. Effect of temperature gradient on solidification microstructure of seeding preparation process for Ni-based single crystal superalloy DD6 [J]. Foundry, 2022, 71: 415
刘晓功, 饶 洋, 刘培元 等. 温度梯度对籽晶法制备镍基单晶高温合金DD6凝固组织的影响 [J]. 铸造, 2022, 71: 415
106 Werner F, Scholz F, Git P, et al. Effects of single crystal growth techniques on dendritic microstructures and small angle orientation defects in Ni-based superalloys [R]. Bamberg, Bavaria: DGM, 2022
107 Git P, Zenk C, Kourner C. Fluidized carbon bed cooling of Ni-based superalloy CMSX-4 [R]. Bamberg, Bavaria: DGM, 2022
108 Yang W C, Hao W S, Sa S P, et al. A multilayer module superimposed wax pattern structure and an efficient method for preparing single crystal blades [P]. Chin Pat, 202210530518.0, 2022
杨文超, 郝文硕, 撒世鹏 等. 一种多层模组叠加蜡模结构及其高效制备单晶叶片的方法 [P]. 中国专利, 202210530518.0, 2022
109 Shen J, Zhang J, Dong J S, et al. Preparation method of high efficiency densely arranged single crystal blades using liquid metal cooling and directional solidification technology [P]. Chin Pat, 202011457377.1, 2022
申 健, 张 健, 董加胜 等. 利用液态金属冷却定向凝固技术进行高效密排单晶叶片的制备方法 [P]. 中国专利, 202011457377.1, 2022
110 Aveson J W, Tennant P A, Foss B J, et al. On the origin of sliver defects in single crystal investment castings [J]. Acta Mater., 2013, 61: 5162
doi: 10.1016/j.actamat.2013.04.071
111 Sun D J, Liu L, Huang T W, et al. Formation of lateral sliver defects in the platform region of single-crystal superalloy turbine blades [J]. Metall. Mater. Trans., 2019, 50A: 1119
112 Huang Y Q, Shen J, Wang D, et al. Formation of sliver defect in Ni-based single crystal superalloy [J]. Metall. Mater. Trans., 2020, 51A: 99
113 Ma D X, Wang F, Xu W T, et al. Formation of sliver defects in single crystal castings of superalloys [J]. Acta Metall. Sin., 2020, 56: 301
马德新, 王 富, 徐维台 等. 高温合金单晶铸件中条纹晶的形成机制 [J]. 金属学报, 2020, 56: 301
doi: 10.11900/0412.1961.2019.00287
114 Xu W L, Wang F, Ma D X, et al. Sliver defect formation in single crystal Ni-based superalloy castings [J]. Mater. Des., 2020, 196: 109138
doi: 10.1016/j.matdes.2020.109138
115 Xia H X, Yang Y H, Feng Q S, et al. Generation mechanism and motion behavior of sliver defect in single crystal Ni-based superalloy [J]. J. Mater. Sci. Technol., 2023, 137: 232
doi: 10.1016/j.jmst.2022.07.045
116 Wang X J, Liu L, Huang T W, et al. A review on the influence of carbon addition on the solidification defects in nickel-based single crystal superalloys [J]. Mater. Rep., 2020, 34: 3148
王晓娟, 刘 林, 黄太文 等. 碳对镍基单晶高温合金凝固缺陷影响的研究进展 [J]. 材料导报, 2020, 34: 3148
117 Wang Z C, Li J R, Liu S Z, et al. Research progress in freckles of single crystal superalloys [J]. J. Mater. Eng., 2021, 49(7): 1
王志成, 李嘉荣, 刘世忠 等. 单晶高温合金雀斑研究进展 [J]. 材料工程, 2021, 49(7): 1
118 Ma D X. Effect of casting geometry on the freckle formation during single crystal solidification of superalloys [J]. Rare. Met. Mater. Eng., 2021, 50: 4357
马德新. 高温合金单晶铸件中形状因素对雀斑缺陷的影响 [J]. 稀有金属材料与工程, 2021, 50: 4357
119 Wang Z C, Li J R, Liu S Z, et al. Investigation on freckle formation of nickel-based single crystal superalloy specimens with suddenly reduced cross section [J]. J. Alloys Compd., 2022, 918: 165631
doi: 10.1016/j.jallcom.2022.165631
120 Ren N, Li J, Panwisawas C, et al. Insight into the sensitivities of freckles in the directional solidification of single-crystal turbine blades [J]. J. Manuf. Process., 2022, 77: 219
doi: 10.1016/j.jmapro.2022.03.019
121 Zhang H J, Liu X S, Ma D X, et al. Digital twin for directional solidification of a single-crystal turbine blade [J]. Acta Mater., 2023, 244: 118579
doi: 10.1016/j.actamat.2022.118579
122 Szeliga D. Reduction of freckle defect in single-crystal blade root by controlling local cooling conditions [J]. Metall. Mater. Trans., 2022, 53A: 3224
123 Newell M, D’Souza N, Green N R. Formation of low angle boundaries in Ni-based superalloys [J]. Int. J. Cast Met. Res., 2009, 22: 66
doi: 10.1179/136404609X367353
124 Bogdanowicz W, Krawczyk J, Paszkowski R, et al. Variation of crystal orientation and dendrite array generated in the root of SX turbine blades [J]. Materials, 2019, 12: 4126
doi: 10.3390/ma12244126
125 Shi Z W, Zheng W, Lu Y Z, et al. Sand-burning reaction of ceramic shell for directional solidification of nickel-based superalloy [J]. Chin. J. Mater. Res., 2021, 35: 251
石振威, 郑 伟, 卢玉章 等. 镍基高温合金定向凝固用陶瓷型壳粘砂反应 [J]. 材料研究学报, 2021, 35: 251
126 Yao J S, Dong L P, Wu Z Q, et al. Interfacial reaction mechanism between ceramic mould and single crystal superalloy for manufacturing turbine blade [J]. Materials, 2022, 15: 5514
doi: 10.3390/ma15165514
127 Orlov M R. Pore formation in single-crystal turbine rotor blades during directional solidification [J]. Russ. Metall., 2008, 2008: 56
doi: 10.1134/S0036029508010114
128 Xiong W, Huang Z W, Xie G, et al. On the inducement of recrystallization in single-crystal superalloy [J]. Metall. Mater. Trans., 2022, 53A: 1585
129 Xiong W, Huang Z W, Xie G, et al. The effect of deformation temperature on recrystallization in a Ni-based single crystal superalloys [J]. Mater. Des., 2022, 222: 111042
doi: 10.1016/j.matdes.2022.111042
130 Long M, Leriche N, Niane N T, et al. A new experimental and simulation methodology for prediction of recrystallization in Ni-based single crystal superalloys during investment casting [J]. J. Mater. Process. Technol., 2022, 306: 117624
doi: 10.1016/j.jmatprotec.2022.117624
131 Xiong W, Xie G, Zhang J. Recrystallization in Ni-based single crystal superalloys [R]. Bamberg, Bavaria: DGM, 2022
132 Zhang J, Song F Y. Research and applications of hot isostatic pressing technology in nickel-based single crystal superalloy [J]. Sci. Technol. Rev., 2020, 38(2): 11
doi: 10.20506/rst.issue.38.1.2937
张 剑, 宋富阳. 热等静压技术在镍基单晶高温合金中的应用研究进展 [J]. 科技导报, 2020, 38(2): 11
133 Horst O M, Ruttert B, Bürger D, et al. On the rejuvenation of crept Ni-base single crystal superalloys (SX) by hot isostatic pressing (HIP) [J]. Mater. Sci. Eng., 2019, A758: 202
134 Lopez-Galilea I, Hecker L, Epishin A, et al. Super-solidus hot isostatic pressing heat treatments for advanced single crystal Ni-base superalloys [J]. Metall. Mater. Trans., 2023, 54A: 1509
135 Ruttert B, Lopez-Galilea I, Theisen W. An integrated HIP heat-treatment of a single crystal Ni-base superalloy [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 391
136 Lan J, Xuan W D, Han Y, et al. Enhanced high temperature elongation of nickel based single crystal superalloys by hot isostatic pressing [J]. J. Alloys Compd., 2019, 805: 78
doi: 10.1016/j.jallcom.2019.07.056
137 Xuan W D, Zhang X Y, Zhao Y J, et al. Mechanism of improved intermediate temperature plasticity of nickel-base single crystal superalloy with hot isostatic pressing [J]. J. Mater. Res. Technol., 2021, 14: 1609
doi: 10.1016/j.jmrt.2021.07.010
138 He S L, Zhao Y S, Lu F, et al. Effects of hot isostatic pressure on microdefects and stress rupture life of second-generation nickel-based single crystal superalloy in as-cast and as-solid-solution states [J]. Acta Metall. Sin., 2020, 56: 1195
doi: 10.11900/0412.1961.2020.00020
和思亮, 赵云松, 鲁 凡 等. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响 [J]. 金属学报, 2020, 56: 1195
doi: 10.11900/0412.1961.2020.00020
139 He Y F, Wang L, Wang D, et al. Effect of hot isostatic pressing on microstructure of a third-generation single crystal superalloy DD33 [J]. Chin. J. Mater. Res., 2022, 36: 649
doi: 10.11901/1005.3093.2021.490
何禹锋, 王 莉, 王 栋 等. 热等静压对第三代单晶高温合金DD33显微组织和持久性能的影响 [J]. 材料研究学报, 2022, 36: 649
doi: 10.11901/1005.3093.2021.490
140 Nie X F, Li Y H, He W F, et al. Research progress and prospect of laser shock peening technology in aero-engine components [J]. J. Mech. Eng., 2021, 57(16): 293
doi: 10.3901/JME.2021.16.293
聂祥樊, 李应红, 何卫锋 等. 航空发动机部件激光冲击强化研究进展与展望 [J]. 机械工程学报, 2021, 57(16): 293
doi: 10.3901/JME.2021.16.293
141 Lu G X, Liu J D, Qiao H C, et al. Nonuniformity of morphology and mechanical properties on the surface of single crystal superalloy subjected to laser shock peening [J]. J. Alloys Compd., 2016, 658: 721
doi: 10.1016/j.jallcom.2015.10.238
142 Geng Y X, Dong X, Wang K D, et al. Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure [J]. Opt. Laser Technol., 2020, 123: 105917
doi: 10.1016/j.optlastec.2019.105917
143 Yao X, Ding Q, Zhao X, et al. Microstructural rejuvenation in a Ni-based single crystal superalloy [J]. Mater. Today Nano, 2022, 17: 100152
144 Rettberg L H, Callahan P G, Goodlet B R, et al. Rejuvenation of directionally solidified and single-crystal nickel-base superalloys [J]. Metall. Mater. Trans., 2021, 52A: 1609
145 Utada S, Ormastroni L M B, Rame J, et al. VHCF life of AM1 Ni-based single crystal superalloy after pre-deformation [J]. Int. J. Fatigue, 2021, 148: 106224
doi: 10.1016/j.ijfatigue.2021.106224
146 Utada S, Rame J, Hamadi S, et al. High-temperature pre-deformation and rejuvenation treatment on the microstructure and creep properties of Ni-based single-crystal superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 240
147 Liu C G, Yang Z Y, Zheng S J, et al. Effect of solution temperature in recovery heat treatment on microstructure and stress rupture properties of single crystal alloy DD11 [J]. Foundry, 2021, 70: 560
刘晨光, 杨振宇, 郑素杰 等. 恢复热处理固溶温度对DD11单晶合金组织及持久性能的影响 [J]. 铸造, 2021, 70: 560
148 Ruttert B, Horst O, Lopez-Galilea I, et al. Rejuvenation of single-crystal Ni-base superalloy turbine blades: Unlimited service life [J]. Metall. Mater. Trans., 2018, 49A: 4262
149 Kalfhaus T, Schneider M, Ruttert B, et al. Repair of Ni-based single-crystal superalloys using vacuum plasma spray [J]. Mater. Des., 2019, 168: 107656
doi: 10.1016/j.matdes.2019.107656
150 Hinchy E P, Barron D, Pomeroy M J, et al. Diffusion braze homogenisation and contraction during re-repair heat treatments of a single crystal nickel-based superalloy [J]. J. Alloys Compd., 2021, 857: 157560
doi: 10.1016/j.jallcom.2020.157560
151 Chen H, Lu Y Y, Luo D, et al. Epitaxial laser deposition of single crystal Ni-based superalloys: Repair of complex geometry [J]. J. Mater. Process. Technol., 2020, 285: 116782
doi: 10.1016/j.jmatprotec.2020.116782
152 Rong P, Yu W J, Wang D W, et al. The inhibition and repairation of the solidification cracks in laser cladded nickel-based single crystal alloy [J]. Appl. Laser, 2020, 40: 978
荣 鹏, 虞文军, 王大为 等. 激光熔覆镍基单晶合金凝固裂纹抑制与修复技术研究 [J]. 应用激光, 2020, 40: 978
153 Lang Z Q, Ye Z, Yang J, et al. Research progress of repair technology for surface defects of single crystal superalloy [J]. Chin. J. Mater. Res., 2021, 35: 161
郎振乾, 叶 政, 杨 健 等. 单晶高温合金表面缺陷焊接修复的研究进展 [J]. 材料研究学报, 2021, 35: 161
154 Xu Q Y, Xia H X. Research progress on numerical simulation of directional solidification of nickel-based superalloy turbine blade [J]. Aeroengine, 2021, 47(4): 141
许庆彦, 夏鹄翔. 镍基高温合金叶片定向凝固过程宏微观数值模拟研究进展 [J]. 航空发动机, 2021, 47(4): 141
155 Qin L. Multi-physics fully-coupled modelling and analysis of solidification defects formation for directionally solidified hollow turbine blades in large-size [D]. Xi'an: Northwestern Polytechnical University, 2018
秦 岭. 大型空心变截面定向晶涡轮叶片多物理场耦合模拟及凝固缺陷形成分析 [D]. 西安: 西北工业大学, 2018
156 Yan X W, Xu Q Y, Tian G Q, et al. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67: 36
doi: 10.1016/j.jmst.2020.06.051
157 Yan X W, Zhang H, Tang N, et al. Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 78
doi: 10.1016/j.pnsc.2018.01.003
158 Huo M, Liu L, Yang W C, et al. Dendrite growth and defects formation with increasing withdrawal rates in the rejoined platforms of Ni-based single crystal superalloys [J]. Vacuum, 2019, 161: 29
doi: 10.1016/j.vacuum.2018.12.013
159 Han D Y, Jiang W G, Xiao J H, et al. Investigation on freckle formation and evolution of single-crystal nickel-based superalloy specimens with different thicknesses and abrupt cross-section changes [J]. J. Alloys Compd., 2019, 805: 218
doi: 10.1016/j.jallcom.2019.07.045
160 Bellomo N P, Öztürk I, Günzel M, et al. Identifying critical defect sizes from pore clusters in nickel-based superalloys using automated analysis and casting simulation [J]. Metall. Mater. Trans., 2023, 54A: 1699
161 Zeng L, Lin J, Xia M X, et al. Directional solidification method for superalloy single crystal blade based on solid-liquid interface steady control [P]. US Pat, 20220395896A1, 2022
162 Guo X, Yang A T, Zhao D Y, et al. Research on displacement and wall thickness evolution of gas turbine blade during casting process based on cantilever structure core [J]. J. Chin. Soc. Power Eng., 2021, 41: 452
郭 雄, 杨啊涛, 赵代银 等. 基于悬臂结构型芯的燃机叶片铸造过程位移、壁厚演化研究 [J]. 动力工程学报, 2021, 41: 452
163 Xia S X, Liu Z F, Guo J Z, et al. A coupled numerical scheme for simulating the process of liquid metal cooling process [R]. Banff, Alberta: CIM, 2023
164 Schleifer F, Fleck M, Holzinger M, et al. Phase-field modeling of γ' and γ″ precipitate size evolution during heat treatment of Ni-based superalloys [A]. Superalloys 2020 [C]. Warrendale, PA: TMS, 2020: 500
165 Yang M. Phase-field simulation of γʹ morphology evolution for Ni-based alloys considering elastic and plastic fields [D]. Xi'an: Northwestern Polytechnical University, 2019
杨 敏. 弹塑性场作用下镍基合金γʹ相演化过程的相场模拟 [D]. 西安: 西北工业大学, 2019
166 Li Y, Liang X Y, Yu Y F, et al. Review on additive manufacturing of single-crystal nickel-based superalloys [J]. Chin. J. Mech. Eng.: Addit. Manuf. Front., 2022, 1: 100019
167 Yang J J, Li F Z, Pan A Q, et al. Microstructure and grain growth direction of SRR99 single-crystal superalloy by selective laser melting [J]. J. Alloys Compd., 2019, 808: 151740
doi: 10.1016/j.jallcom.2019.151740
168 Ci S W, Liang J J, Li J G, et al. Microstructure and stress-rupture property of DD32 nickel-based single crystal superalloy fabricated by additive manufacturing [J]. J. Alloys Compd., 2021, 854: 157180
doi: 10.1016/j.jallcom.2020.157180
169 Bürger D, Parsa A B, Ramsperger M, et al. Creep properties of single crystal Ni-base superalloys (SX): A comparison between conventionally cast and additive manufactured CMSX-4 materials [J]. Mater. Sci. Eng., 2019, A762: 138098
170 Ormastroni L M B, Lopez-Galilea I, Pistor J, et al. Very high cycle fatigue durability of an additively manufactured single-crystal Ni-based superalloy [J]. Addit. Manuf., 2022, 54: 102759
171 Bäreis J, Semjatov N, Renner J, et al. Electron-optical in-situ crack monitoring during electron beam powder bed fusion of the Ni-Base superalloy CMSX-4 [J]. Prog. Addit. Manuf., doi: 10.1007/s40964-022-00357-9
doi: 10.1007/s40964-022-00357-9
172 Tinat M R A, Uddagiri M, Steinbach I, et al. Numerical simulations to predict the melt pool dynamics and heat transfer in additive manufacturing process of Ni-based superalloy (CMSX-4) [R]. Bamberg, Bavaria: DGM, 2022
173 Ramsperger M, Eichler S. Electron beam based additive manufacturing of Alloy 247 for turbine engine application: From research towards industrialization [J]. Metall. Mater. Trans., 2023, 54A: 1730
174 Xiong W, Guo A X Y, Zhan S, et al. Refractory high-entropy alloys: A focused review of preparation methods and properties [J]. J. Mater. Sci. Technol., 2023, 142: 196
doi: 10.1016/j.jmst.2022.08.046
175 Hua X J, Hu P, Xing H R, et al. Development and property tuning of refractory high-entropy alloys: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1231
doi: 10.1007/s40195-022-01382-x
176 Xu Z Q, Ma Z L, Wang M, et al. Design of novel low density refractory high entropy alloys for high-temperature applications [J]. Mater. Sci. Eng., 2019, A755: 318
177 Wang W, Zhang Z T, Niu J Z, et al. Effect of Al addition on structural evolution and mechanical properties of the Al x HfNbTiZr high-entropy alloys [J]. Mater. Today Commun., 2018, 16: 242
178 Zhang H, Zhao Y Z, Cai J L, et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing [J]. Mater. Des., 2021, 201: 109462
doi: 10.1016/j.matdes.2021.109462
179 Yurchenko N, Panina E, Tikhonovsky M, et al. Structure and mechanical properties of an in situ refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite [J]. Mater. Lett., 2020, 264: 127372
doi: 10.1016/j.matlet.2020.127372
180 Kang B, Kong T, Ryu H J, et al. Superior mechanical properties and strengthening mechanisms of lightweight Al x CrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69: 32
doi: 10.1016/j.jmst.2020.07.012
181 Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr [J]. Mater. Des., 2018, 139: 498
doi: 10.1016/j.matdes.2017.11.033
182 Tong C J, Chen M R, Yeh J W, et al. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements [J]. Metall. Mater. Trans., 2005, 36A: 1263
183 Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Si x high-entropy composites [J]. J. Alloys Compd., 2017, 694: 869
doi: 10.1016/j.jallcom.2016.10.014
184 Chen H, Kauffmann A, Laube S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys [J]. Metall. Mater. Trans., 2018, 49A: 772
185 Han Z D, Chen N, Zhao S F, et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys [J]. Intermetallics, 2017, 84: 153
doi: 10.1016/j.intermet.2017.01.007
186 Waseem O A, Lee J, Lee H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy Ti x WTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials [J]. Mater. Chem. Phys., 2018, 210: 87
doi: 10.1016/j.matchemphys.2017.06.054
187 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
188 Sun J, Zhao W X, Yan P, et al. High temperature tensile properties of as-cast and forged CrMnFeCoNi high entropy alloy [J]. Mater. Sci. Eng., 2022, A850: 143570
189 Kuznetsov A V, Shaysultanov D G, Stepanov N D, et al. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions [J]. Mater. Sci. Eng., 2012, A533: 107
190 Kumar P, Kim S J, Yu Q, et al. Compressive vs. tensile yield and fracture toughness behavior of a body-centered cubic refractory high-entropy superalloy Al0.5Nb1.25Ta1.25TiZr at temperatures from ambient to 1200oC [J]. Acta Mater., 2023, 245: 118620
doi: 10.1016/j.actamat.2022.118620
191 Xiao W C, Liu S F, Zhao Y L, et al. A novel single-crystal L12-strengthened Co-rich high-entropy alloy with excellent high-temperature strength and antioxidant property [J]. J. Mater. Res. Technol., 2023, 23: 2343
doi: 10.1016/j.jmrt.2023.01.182
192 Tsao T K, Yeh A C, Kuo C M, et al. The high temperature tensile and creep behaviors of high entropy superalloy [J]. Sci. Rep., 2017, 7: 12658
doi: 10.1038/s41598-017-13026-7
193 Daoud H M, Manzoni A M, Wanderka N, et al. High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) [J]. JOM, 2015, 67: 2271
doi: 10.1007/s11837-015-1484-7
194 Gadelmeier C, Yang Y, Glatzel U, et al. Creep strength of refractory high-entropy alloy TiZrHfNbTa and comparison with Ni-base superalloy CMSX-4 [J]. Cell Rep. Phys. Sci., 2022, 3: 100991
195 Xu Z, Li G, Zhou Y, et al. Tension-compression asymmetry of nickel-based superalloys: A focused review [J]. J. Alloys Compd., 2023, 945: 169313
doi: 10.1016/j.jallcom.2023.169313
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[7] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
No Suggested Reading articles found!