Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys
GONG Shengkai1,2(), LIU Yuan3, GENG Lilun4, RU Yi1,2, ZHAO Wenyue1, PEI Yanling1, LI Shusuo3
1Frontier Research Institute of Innovative Science and Technology, Beihang University, Beijing 100191, China 2Tianmu Mountain Laboratory, Hangzhou 311115, China 3Research Institute of Aero-Engine, Beihang University, Beijing 100191, China 4School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Cite this article:
GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys. Acta Metall Sin, 2023, 59(9): 1097-1108.
With the continuous increase of turbine inlet temperature of advanced aero-engine, the protective coating technology plays a vital role in improving the oxidation and corrosion resistance of turbine blade materials to ensure the safe performance of turbine blades. However, an intrinsic physical and chemical property mismatch exists between protective coating and superalloy. Interfacial reaction leads to the degradation of interfacial microstructure and mechanical properties. It is the key factor to restrict the application of coating. In this paper, the evolution and diffusion behavior of typical coating/superalloy interface microstructure and its influencing factors are summarized. The influence of interfacial behavior on microstructural stability and mechanical properties of superalloys with coatings is also discussed. The control methods of coating/alloy interface are introduced from three aspects, including the optimization of microstructure composition, design of interfacial diffusion-resistant layer, and development of a new type of interfacial stabilizing coating. Furthermore, the key characteristics of the compatibility of the coating/superalloy interface are summarized, which will promote systematic studies on the effect of the interface on the coating/alloy properties, the combination of multiple methods to control the interface, and the computer-aided coating design.
Fig.1 Sketch map of the effective load-bearing plane position in the coated superalloys with different thermal exposure time (IDZ—interdiffusion zone)
Fig.2 Cross-sectional morphology of the gradient MCrAlY coating
1
Matsuoka Y, Aoki Y, Matsumoto K, et al. The formation of SRZ on a fourth generation single crystal superalloy applied with aluminide coating [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 637
2
Das D K, Murphy K S, Ma S W, et al. Formation of secondary reaction zones in diffusion aluminide-coated Ni-base single-crystal superalloys containing ruthenium [J]. Metall. Mater. Trans., 2008, 39A: 1647
3
Latief F H, Kakehi K. Influence of heat treatment on anisotropic creep behavior of aluminide coating on a Ni-base single crystal superalloy [J]. Mater. Des. (1980-2015), 2013, 52: 134
doi: 10.1016/j.matdes.2013.04.101
4
Rae C M F, Hook M S, Reed R C. The effect of TCP morphology on the development of aluminide coated superalloys [J]. Mater. Sci. Eng., 2005, A396: 231
5
Esakkiraja N, Gupta A, Jayaram V, et al. Diffusion, defects and understanding the growth of a multicomponent interdiffusion zone between Pt-modified B2 NiAl bond coat and single crystal superalloy [J]. Acta Mater., 2020, 195: 35
doi: 10.1016/j.actamat.2020.04.016
6
Dahl K V, Hald J, Horsewell A. Interdiffusion between Ni-based superalloy and MCrAlY coating [J]. Defect Diffus. Forum, 2006, 258-260: 73
doi: 10.4028/www.scientific.net/DDF.258-260
7
Yang L L, Chen M H, Wang J L, et al. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation [J]. J. Mater. Sci. Technol., 2020, 45: 49
doi: 10.1016/j.jmst.2019.11.017
8
Walston W S, Schaeffer J C, Murphy W H. A new type of microstructural instability in superalloys-SRZ [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 9
9
Wu J J, Jiang X W, Song P, et al. Anisotropy of interface characteristics between NiCoCrAlY coating and a hot corrosion resistant Ni-based single crystal superalloy during thermal exposure at different temperatures [J]. Appl. Surf. Sci., 2020, 532: 147405
doi: 10.1016/j.apsusc.2020.147405
10
Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
doi: 10.1016/j.actamat.2018.08.018
11
Zhang Y, Haynes J A, Pint B A, et al. Martensitic transformation in CVD NiAl and (Ni, Pt)Al bond coatings [J]. Surf. Coat. Technol., 2003, 163-164: 19
doi: 10.1016/S0257-8972(02)00585-6
12
Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
doi: 10.1016/j.pmatsci.2012.08.002
13
Tawancy H M, Mohamed A I, Abbas N M, et al. Effect of superalloy substrate composition on the performance of a thermal barrier coating system [J]. J. Mater. Sci., 2003, 38: 3797
doi: 10.1023/A:1025992502450
14
Reid M, Pomeroy M J, Robinson J S. Microstructural instability in coated single crystal superalloys [J]. J. Mater. Process. Technol., 2004, 153-154: 660
doi: 10.1016/j.jmatprotec.2004.04.132
15
Zhou Y H, Wang L, Wang G, et al. Influence of substrate composition on the oxidation performance of nickel aluminide coating prepared by pack cementation [J]. Corros. Sci., 2016, 110: 284
doi: 10.1016/j.corsci.2016.04.041
16
Leng W, Pillai R, Naumenko D, et al. Effect of substrate alloy composition on the oxidation behaviour and degradation of aluminide coatings on two Ni base superalloys [J]. Corros. Sci., 2020, 167: 108494
doi: 10.1016/j.corsci.2020.108494
17
Galiullin T, Chyrkin A, Pillai R, et al. Effect of alloying elements in Ni-base substrate material on interdiffusion processes in MCrAlY-coated systems [J]. Surf. Coat. Technol., 2018, 350: 359
doi: 10.1016/j.surfcoat.2018.07.020
18
Yin B, Xie G, Lou L H, et al. Effect of Ta on microstructural evolution of NiCrAlYSi coated Ni-base single crystal superalloys [J]. J. Alloys Compd., 2020, 829: 154440
doi: 10.1016/j.jallcom.2020.154440
19
Yuan K, Peng R L, Li X H. A continuous β-NiAl layer forming at the interface of a MCrAlY and CMSX-4 [J]. J. Therm. Spray Technol., 2016, 25: 244
doi: 10.1007/s11666-015-0293-4
20
Murakami H, Sakai T. Anisotropy of secondary reaction zone formation in aluminized Ni-based single-crystal superalloys [J]. Scr. Mater., 2008, 59: 428
doi: 10.1016/j.scriptamat.2008.04.025
21
Hong H U, Yoon J G, Choi B G, et al. On the mechanism of secondary reaction zone formation in a coated nickel-based single-crystal superalloy containing ruthenium [J]. Scr. Mater., 2013, 69: 33
doi: 10.1016/j.scriptamat.2013.03.015
22
Wang J L, Chen M H, Cheng Y X, et al. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2017, 123: 27
doi: 10.1016/j.corsci.2017.04.004
23
Li M H, Hu W Y, Sun X F, et al. Recent research progress in thermal barrier coatings [J]. Mater. Rep., 2005, 19(4): 41
Nicholls J R, Simms N J, Chan W Y, et al. Smart overlay coatings-concept and practice [J]. Surf. Coat. Technol., 2002, 149: 236
doi: 10.1016/S0257-8972(01)01499-2
25
Ma K K, Schoenung J M. Thermodynamic investigation into the equilibrium phases in the NiCoCrAl system at elevated temperatures [J]. Surf. Coat. Technol., 2010, 205: 2273
doi: 10.1016/j.surfcoat.2010.09.009
26
Kvernes I A, Kofstad P. The oxidation behavior of some Ni-Cr-Al alloys at high temperatures [J]. Metall. Trans., 1972, 3: 1511
27
Salam S, Hou P Y, Zhang Y D, et al. Compositional effects on the high-temperature oxidation lifetime of MCrAlY type coating alloys [J]. Corros. Sci., 2015, 95: 143
doi: 10.1016/j.corsci.2015.03.011
28
Chen H, Rushworth A, Hou X, et al. Effects of temperature on the β-phase depletion in MCrAlYs: A modelling and experimental study towards designing new bond coat alloys [J]. Surf. Coat. Technol., 2019, 363: 400
doi: 10.1016/j.surfcoat.2019.02.024
29
Liu Y, Zou M, Su H Z, et al. Coating-associated microstructure evolution and elemental interdiffusion behavior at a Mo-rich nickel-based superalloy [J]. Surf. Coat. Technol., 2021, 411: 127005
doi: 10.1016/j.surfcoat.2021.127005
30
Pint B A. The role of chemical composition on the oxidation performance of aluminide coatings [J]. Surf. Coat. Technol., 2004, 188-189: 71
doi: 10.1016/j.surfcoat.2004.08.007
31
Zhang Y, Haynes J A, Wright G, et al. Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings [J]. Metall. Mater. Trans., 2001, 32A: 1727
32
Pauletti E, d'Oliveira A S C M. Influence of Pt concentration on structure of aluminized coatings on a Ni base superalloy [J]. Surf. Coat. Technol., 2017, 332: 57
doi: 10.1016/j.surfcoat.2017.10.052
33
Tawancy H M, Abbas N M, Rhys-Jones T N. Role of platinum in aluminide coatings [J]. Surf. Coat. Technol., 1991, 49: 1
doi: 10.1016/0257-8972(91)90022-O
34
Yang Y F, Jiang C Y, Zhang Z Y, et al. Hot corrosion behaviour of single-phase platinum-modified aluminide coatings: Effect of Pt content and pre-oxidation [J]. Corros. Sci., 2017, 127: 82
doi: 10.1016/j.corsci.2017.08.015
35
Kiruthika P, Makineni S K, Srivastava C, et al. Growth mechanism of the interdiffusion zone between platinum modified bond coats and single crystal superalloys [J]. Acta Mater., 2016, 105: 438
doi: 10.1016/j.actamat.2015.12.014
36
Angenete J, Stiller K, Bakchinova E. Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050oC [J]. Surf. Coat. Technol., 2004, 176: 272
doi: 10.1016/S0257-8972(03)00767-9
37
Marino K A, Carter E A. The effect of platinum on Al diffusion kinetics in β-NiAl: Implications for thermal barrier coating lifetime [J]. Acta Mater., 2010, 58: 2726
doi: 10.1016/j.actamat.2010.01.008
38
Yang Y F, Jiang C Y, Yao H R, et al. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating [J]. Corros. Sci., 2016, 113: 17
doi: 10.1016/j.corsci.2016.09.014
39
Sakai T, Shibata M, Murakami H, et al. Microstructural investigation of CoNiCrAlY coated Ni-based single crystal superalloy prepared by LPPS [J]. Mater. Trans., 2006, 47: 1665
doi: 10.2320/matertrans.47.1665
40
Kasai K, Murakami H, Kuroda S, et al. Effect of surface treatment and crystal orientation on microstructural changes in aluminized Ni-based single-crystal superalloy [J]. Mater. Trans., 2011, 52: 1768
doi: 10.2320/matertrans.M2010439
41
Okazaki M, Ohtera I, Harada Y. Damage repair in CMSX-4 alloy without fatigue life reduction penalty [J]. Metall. Mater. Trans., 2004, 35A: 535
42
Kim H J, Walter M E. Characterization of the degraded microstructures of a platinum aluminide coating [J]. Mater. Sci. Eng., 2003, A360: 7
43
Kowalewski R, Mughrabi H. Influence of a plasma-sprayed NiCrAlY coating on the low-cycle fatigue behaviour of a directionally solidified nickel-base superalloy [J]. Mater. Sci. Eng., 1998, A247: 295
44
Rahmani K, Nategh S. Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80 [J]. Surf. Coat. Technol., 2008, 202: 1385
doi: 10.1016/j.surfcoat.2007.06.041
45
Zhang B, Lu X, Liu D L, et al. Influence of recrystallization on high-temperature stress rupture property and fracture behavior of single crystal superalloy [J]. Mater. Sci. Eng., 2012, A551: 149
46
Meng J, Jin T, Sun X F, et al. Effect of surface recrystallization on the creep rupture properties of a nickel-base single crystal superalloy [J]. Mater. Sci. Eng., 2010, A527: 6119
47
Xie G, Wang L, Zhang J, et al. Influence of recrystallization on the high-temperature properties of a directionally solidified Ni-base superalloy [J]. Metall. Mater. Trans., 2008, 39A: 206
48
Zhang B, Cao X G, Liu C K. Review on inhibition methods of recrystallization of single crystal superalloys [J]. Failure Anal. Prev., 2013, 8: 191
Wang Q M, Tang Y J, Zhang J, et al. Recrystallization in NiCoCrAlY coated DS nickel base superalloys during thermal aging [J]. Mater. Sci. Forum, 2007, 539-543: 1092
doi: 10.4028/www.scientific.net/MSF.539-543
50
Wang K, Xu Z H, Zhen Z, et al. Effect of grit blasting on the recrystallization and elemental diffusion behaviors of single crystal superalloy [J]. Vacuum, 2020, 57(3): 25
Liang X H, Zhou K S, Liu M, et al. Recrystallization on interface between NiCoCrAlYTa coating and nickel-based super-alloy [J]. Rare Met. Mater. Eng., 2009, 38: 545
Wen J, Sun J Y, Du B X, et al. The interfacial stability of single crystal superalloy affected by the phase structure of the Ni-Al coating [J]. Scr. Mater., 2023, 227: 115297
doi: 10.1016/j.scriptamat.2023.115297
53
Rae C M F, Reed R C. The precipitation of topologically close-packed phases in rhenium-containing superalloys [J]. Acta Mater., 2001, 49: 4113
doi: 10.1016/S1359-6454(01)00265-8
54
Simonetti M, Caron P. Role and behaviour of μ phase during deformation of a nickel-based single crystal superalloy [J]. Mater. Sci. Eng., 1998, A254: 1
55
Chen Q Z, Jones C N, Knowles D M. Effect of alloying chemistry on MC carbide morphology in modified RR2072 and RR2086 SX superalloys [J]. Scr. Mater., 2002, 47: 669
doi: 10.1016/S1359-6462(02)00266-X
56
Bressers J, Arrell D J, Ostolaza K, et al. Effect of an aluminide coating on precipitate rafting in superalloys [J]. Mater. Sci. Eng., 1996, A220: 147
57
Gong X Y, Peng H, Ma Y, et al. Microstructure evolution of an EB-PVD NiAl coating and its underlying single crystal superalloy substrate [J]. J. Alloys Compd., 2016, 672: 36
doi: 10.1016/j.jallcom.2016.02.115
58
Wang Q M, Li H, Guo M H, et al. Thermal shock cycling behavior of NiCoCrAlYSiB coatings on Ni-base superalloys: II. Microstructure evolution [J]. Mater. Sci. Eng., 2005, A406: 350
59
Alam Z, Satyanarayana D V V, Chatterjee D, et al. Effect of prior cyclic oxidation on the creep behavior of directionally solidified (DS) CM-247LC alloy [J]. Mater. Sci. Eng., 2012, A536: 14
60
Alam Z, Hazari N, Varma V K, et al. Effect of cyclic oxidation exposure on tensile properties of a Pt-aluminide bond-coated Ni-base superalloy [J]. Metall. Mater. Trans., 2011, 42A: 4064
61
Liu L, He J, Wu Y T, et al. Investigation on the tensile properties of PtAl and PtReAl coated Ni3Al-based single crystal superalloy [J]. Mater. Sci. Eng., 2023, A867: 144750
62
Parlikar C, Satyanarayana D V V, Chatterjee D, et al. Effect of Pt–aluminide bond coat on tensile and creep behavior of a nickel-base single crystal superalloy [J]. Mater. Sci. Eng., 2015, A639: 575
63
Veys J M, Mevrel R. Influence of protective coatings on the mechanical properties of CMSX-2 and Cotac 784 [J]. Mater. Sci. Eng., 1987, 88: 253
doi: 10.1016/0025-5416(87)90093-0
64
Wu X M, Li J P, Cai Y, et al. Effect of NiCrAlYSi coating on mechanical properties of DZ125 alloy [J]. Equip. Environ. Eng., 2009, 6(5): 4
Xiao C B, Han Y F, Song J X, et al. Effect of NiCoCrAlYHf overlay coating on performance of Ni3Al-based alloy IC6A [J]. Surf. Coat. Technol., 2006, 200: 3095
doi: 10.1016/j.surfcoat.2005.08.003
66
Texier D, Monceau D, Hervier Z, et al. Effect of interdiffusion on mechanical and thermal expansion properties at high temperature of a MCrAlY coated Ni-based superalloy [J]. Surf. Coat. Technol., 2016, 307: 81
doi: 10.1016/j.surfcoat.2016.08.059
67
Texier D, Andrieu E, Selezneff S, et al. High temperature tensile properties of β-γ-γ'-MCrAlY and β-Ni(Al,Pt) bond-coatings and interdiffusion zone with Ni-based single crystal superalloys [A]. ECI Thermal Barrier Coatings V [C]. Irsee: ESI, 2018
68
Alam Z, Chatterjee D, Kamat S V, et al. Evaluation of ductile-brittle transition temperature (DBTT) of aluminide bond coats by micro-tensile test method [J]. Mater. Sci. Eng., 2010, A527: 7147
69
Parlikar C, Alam Z, Chatterjee D, et al. Oxidation and concomitant effects on the microstructure and high temperature tensile properties of a DS Ni-base superalloy applied with different thicknesses of Pt-aluminide (PtAl) bond coat [J]. Surf. Coat. Technol., 2019, 373: 25
doi: 10.1016/j.surfcoat.2019.05.060
70
Itoh Y, Saitoh M, Ishiwata Y. Influence of high-temperature protective coatings on the mechanical properties of nickel-based superalloys [J]. J. Mater. Sci., 1999, 34: 3957
doi: 10.1023/A:1004643311001
71
Latief F H, Kakehi K, Murakami H. Anisotropic creep behavior of aluminized Ni-based single crystal superalloy TMS-75 [J]. Mater. Sci. Eng., 2013, A567: 65
72
Narita T. A view of compatible heat-resistant alloy and coating systems at high-temperatures [J]. AIP Conf. Proc., 2009, 1169: 63
73
Liu Y, Ru Y, Zhang H, et al. Coating-assisted deterioration mechanism of creep resistance at a nickel-based single-crystal superalloy [J]. Surf. Coat. Technol., 2021, 406: 126668
doi: 10.1016/j.surfcoat.2020.126668
74
Hüttner R, Gabel J, Glatzel U, et al. First creep results on thin-walled single-crystal superalloys [J]. Mater. Sci. Eng., 2009, A510-511: 307
75
Brunner M, Bensch M, Völkl R, et al. Thickness influence on creep properties for Ni-based superalloy M247LC SX [J]. Mater. Sci. Eng., 2012, A550: 254
76
Liu Y, Zhou H, Wu M M, et al. Coating-related deterioration mechanism of creep performance at a thermal exposed single crystal Ni-base superalloy [J]. Mater. Charact., 2022, 187: 111839
doi: 10.1016/j.matchar.2022.111839
77
Norton F H. The Creep of Steel at High Temperatures [M]. New York: McGraw-Hill Book Company, 1929: 70
78
Tian H, He L M, Mu R D. Effect of thermal barrier coatings on high cycle fatigue properties of DD6 single crystal superalloy [J]. Equip. Environ. Eng., 2019, 16(1): 41
Totemeier T C, King J E. Isothermal fatigue of an aluminide-coated single-crystal superalloy: Part I [J]. Metall. Mater. Trans., 1996, 27A: 353
80
Liu Y, Qi H Y, Song J N, et al. Low-cycle fatigue of MCrAlY-coated superalloys: A fracture mechanics-based analysis [J]. Mater. Sci. Technol., 2021, 37: 151
doi: 10.1080/02670836.2020.1870265
81
Geng L L, Zhao W Y, Ru Y, et al. Tailoring coating composition for the associated microstructural stability of a single-crystal superalloy: An experimental and simulation study [J]. Corros. Sci., 2023, 211: 110916
doi: 10.1016/j.corsci.2022.110916
82
He J, Peng H, Gong S K, et al. Synergistic effect of reactive element co-doping in two-phase (γ' + β) Ni-Al alloys [J]. Corros. Sci., 2017, 120: 130
doi: 10.1016/j.corsci.2017.03.007
83
He J, Zhang Z, Peng H, et al. The role of Dy and Hf doping on oxidation behavior of two-phase (γ′ + β) Ni-Al alloys [J]. Corros. Sci., 2015, 98: 699
doi: 10.1016/j.corsci.2015.06.016
84
Wang Q M, Wu Y N, Guo M H, et al. Ion-plated Al-O-N and Cr-O-N films on Ni-base superalloys as diffusion barriers [J]. Surf. Coat. Technol., 2005, 197: 68
doi: 10.1016/j.surfcoat.2004.09.022
85
Guo C A, Wang W, Cheng Y X, et al. Yttria partially stabilised zirconia as diffusion barrier between NiCrAlY and Ni-base single crystal René N5 superalloy [J]. Corros. Sci., 2015, 94: 122
doi: 10.1016/j.corsci.2015.01.048
86
Guo H B, Cui Y J, Hui P, et al. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-containing superalloy [J]. Corros. Sci., 2010, 52: 1440
doi: 10.1016/j.corsci.2010.01.009
87
Lou H Y, Wang F H. Effective of Ta, Ti and TiN barriers on diffusion and oxidation kinetics of sputtered CoCrAlY coatings [J]. Vacuum, 1992, 43: 757
doi: 10.1016/0042-207X(92)90127-I
88
Narita T, Thosin K Z, Fengqun L, et al. Development of Re-based diffusion barrier coatings on nickel based superalloys [J]. Mater. Corros., 2005, 56: 923
doi: 10.1002/(ISSN)1521-4176
89
Li J C, Wei L L, He J, et al. The role of Re in improving the oxidation-resistance of a Re modified PtAl coating on Mo-rich single crystal superalloy [J]. J. Mater. Sci. Technol., 2020, 58: 63
doi: 10.1016/j.jmst.2020.03.054
90
Wu F, Murakami H, Suzuki A. Development of an iridium-tantalum modified aluminide coating as a diffusion barrier on nickel-base single crystal superalloy TMS-75 [J]. Surf. Coat. Technol., 2003, 168: 62
doi: 10.1016/S0257-8972(03)00009-4
91
Suzuki A, Wu F, Murakami H, et al. High temperature characteristics of Ir-Ta coated and aluminized Ni-base single crystal superalloys [J]. Sci. Technol. Adv. Mater., 2004, 5: 555
doi: 10.1016/j.stam.2004.03.004
92
Haynes J A, Zhang Y, Cooley K M, et al. High-temperature diffusion barriers for protective coatings [J]. Surf. Coat. Technol., 2004, 188-189: 153
doi: 10.1016/j.surfcoat.2004.08.066
93
Zhang Z, Bai B, Peng H, et al. Effect of Ru on interdiffusion dynamics of β-NiAl/DD6 system: A combined experimental and first-principles studies [J]. Mater. Des., 2015, 88: 667
doi: 10.1016/j.matdes.2015.09.041
94
Tan X P, Liu J L, Jin T, et al. Effect of Ru additions on very high temperature creep properties of a single crystal Ni-based superalloy [J]. Mater. Sci. Eng., 2013, A580: 21
95
Wang Y, Guo H B, Peng H, et al. Diffusion barrier behaviors of (Ru, Ni)Al/NiAl coatings on Ni-based superalloy substrate [J]. Intermetallics, 2011, 19: 191
doi: 10.1016/j.intermet.2010.08.016
96
Wang D, Peng H, Gong S K, et al. NiAlHf/Ru: Promising bond coat materials in thermal barrier coatings for advanced single crystal superalloys [J]. Corros. Sci., 2014, 78: 304
doi: 10.1016/j.corsci.2013.10.013
97
Bai Z M, Li D Q, Peng H, et al. Suppressing the formation of SRZ in a Ni-based single crystal superalloy by RuNiAl diffusion barrier [J]. Prog. Nat. Sci.: Mater. Int., 2012, 22: 146
doi: 10.1016/j.pnsc.2012.03.007
98
Matsuoka Y, Chikugo K, Suzuki T, et al. Isothermal oxidation behavior of ru modified aluminide coating on a fourth generation single crystal superalloy [J]. Mater. Sci. Forum, 2006, 512: 111
doi: 10.4028/www.scientific.net/MSF.512
99
Tryon B, Murphy K S, Yang J Y, et al. Hybrid intermetallic Ru/Pt-modified bond coatings for thermal barrier systems [J]. Surf. Coat. Technol., 2007, 202: 349
doi: 10.1016/j.surfcoat.2007.05.086
100
Song Y X, Murakami H, Zhou C G. Cyclic-oxidation behavior of multilayered Pt/Ru-modified aluminide coating [J]. J. Mater. Sci. Technol., 2011, 27: 280
101
Kawagishi K, Harada H, Sato A, et al. EQ coating: A new concept for SRZ-free coating systems [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 761
102
Wang F, Tian X, Li Q, et al. Oxidation and hot corrosion behavior of sputtered nanocrystalline coating of superalloy K52 [J]. Thin Solid Films, 2008, 516: 5740
doi: 10.1016/j.tsf.2007.07.131
103
Liu C, Chen Y, Eggeman A S, et al. Pt effect on early stage oxidation behaviour of Pt-diffused γ-Ni/γ'-Ni3Al coatings [J]. Acta Mater., 2020, 189: 232
doi: 10.1016/j.actamat.2020.03.013
104
Haynes J A, Pint B A, Zhang Y, et al. The effect of Pt content on γ-γ′ NiPtAl coatings [J]. Surf. Coat. Technol., 2008, 203: 413
doi: 10.1016/j.surfcoat.2008.08.063
105
Sokol M, Wang J, Keshavan H, et al. Bonding and oxidation protection of Ti2AlC and Cr2AlC for a Ni-based superalloy [J]. J. Eur. Ceram. Soc., 2019, 39: 878
doi: 10.1016/j.jeurceramsoc.2018.10.019
106
Li J M, Jing J, He J, et al. Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures [J]. Mater. Des., 2020, 193: 108776
doi: 10.1016/j.matdes.2020.108776
107
Xu Z Z, Zhang P, Wang W, et al. AlCoCrNiMo high-entropy alloy as diffusion barrier between NiAlHf coating and Ni-based single crystal superalloy [J]. Surf. Coat. Technol., 2021, 414: 127101
doi: 10.1016/j.surfcoat.2021.127101
108
Cai Y C, Zhu L S, Cui Y, et al. High-temperature oxidation behavior of FeCoCrNiAl x high-entropy alloy coatings [J]. Mater. Res. Express, 2019, 6: 126552
doi: 10.1088/2053-1591/ab562d
109
Yang T F, Xia S Q, Liu S, et al. Effects of Al addition on microstructure and mechanical properties of Al x CoCrFeNi High-entropy alloy [J]. Mater. Sci. Eng., 2015, A648: 15
110
Bao Z B, Wang Q M, Li W Z, et al. Preparation and hot corrosion behaviour of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superalloy [J]. Corros. Sci., 2009, 51: 860
doi: 10.1016/j.corsci.2009.01.003
111
Bababdani S M, Nogorani F S. Overaluminizing of a CoNiCrAlY coating by inward and outward diffusion treatments [J]. Metall. Mater. Trans., 2014, 45A: 2116
112
Kang J, Liu Y, Geng L L, et al. Microstructure and performance properties of 1200oC-servicing gradiently aluminized NiCrAlYSi coating for single-crystal nickel-based superalloy [J]. J. Alloys Compd., 2022, 924: 166619
doi: 10.1016/j.jallcom.2022.166619