|
|
Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting |
ZHANG Dongyang1, ZHANG Jun1, LI Shujun2( ), REN Dechun2, MA Yingjie2, YANG Rui2 |
1College of Mechanical Engineering, Shenyang University, Shenyang 110044, China 2Shi -changxu Advanced Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting. Acta Metall Sin, 2023, 59(5): 647-656.
|
Abstract Lightweight metallic cellular components with high strength have received extensive interest because they are desirable for structural components. Previously, titanium alloy cellular structures were formed using additive manufacturing with the selective laser melting or electron beam melting technique. Numerous techniques have been developed to improve their strength. Most of these studies have focused on structure topology design. The relationship between the strength and mechanical properties of their strut parent materials has gained considerable attention. XRD, OM, SEM, and compression tests were used to investigate the effects of heat treatment on the microstructure and mechanical properties of Ti-5Al-5Mo-5V-3Cr-1Zr (Ti55531) alloy porous materials prepared through selective laser melting. The results show that the microstructure in struts consist of α and β phases after solution treatment at a temperature between 750oC and 900oC followed by an aging treatment at a temperature between 500oC and 600oC. The volume fraction of the primary α phase in the struts decreases as the solution temperature rises, whereas the volume fraction of the secondary α phase increases. The strut parent material's compressive strength increases but its elongation decreases, resulting in a decrease in toughness. With the increase of aging temperature, the shape, size, and volume fraction of the primary α phase in the strut do not change considerably, whereas the volume fraction of the secondary α phase decreases and the size increases. The strut parent material's compressive strength decreases while elongation increases, increa-sing toughness. The compressive strength of the examined porous alloy is strongly connected to the toughness of the parent material of the struts, which can be effectively improved by adjusting the strength and plasticity of the struts through heat treatment. The above results will guide the design of lightweight metallic cellular components with high strength.
|
Received: 30 July 2021
|
|
Fund: National Natural Science Foundation of China(51871220);National Natural Science Foundation of China(51631007);Natural Science Foundation of Liaoning Province(LACT-007);Opening Project of National Key Laboratory of Shock Wave and Detonation Physics(2022JCJQLB05702) |
1 |
Zhang E L, Wang X Y, Han Y. Research status of biomedical porous Ti and its alloy in china[J]. Acta. Metall. Sin., 2017, 53: 1555
|
|
张二林, 王晓燕, 憨 勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53: 1555
|
2 |
Ren D C, Li S J, Wang H, et al. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique[J]. J. Mater. Sci. Technol., 2019, 35: 285
doi: 10.1016/j.jmst.2018.09.066
|
3 |
Liu Y J, Ren D C, Li S J, et al. Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting[J]. Addit. Manuf., 2020, 32: 101060
|
4 |
Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. 2nd Ed., Cambridge: Cambridge University Press, 1999: 12
|
5 |
Li X, Xiao L J, Song W D. Dynamic behavior of 3D printed graded gyroid structures under impact loading[J]. Chin. J. High Pressure Phys., 2021, 35(3): 90
|
|
厉 雪, 肖李军, 宋卫东. 3D打印梯度Gyroid结构的动态冲击响应[J]. 高压物理学报, 2021, 35(3): 90
|
6 |
Luxner M H, Woesz A, Stampfl J, et al. A finite element study on the effects of disorder in cellular structures[J]. Acta Biomater., 2009, 5: 381
doi: 10.1016/j.actbio.2008.07.025
pmid: 18753022
|
7 |
Vesenjak M, Krstulović-Opara L, Ren Z, et al. Cell shape effect evaluation of polyamide cellular structures[J]. Polym. Test., 2010, 29: 991
doi: 10.1016/j.polymertesting.2010.09.001
|
8 |
Li S J, Xu Q S, Wang Z, et al. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method[J]. Acta Biomater., 2014, 10: 4537
doi: 10.1016/j.actbio.2014.06.010
pmid: 24969664
|
9 |
Jang D, Meza L R, Greer F, et al. Fabrication and deformation of three-dimensional hollow ceramic nanostructures[J]. Nat. Mater., 2013, 12: 893
doi: 10.1038/nmat3738
pmid: 23995324
|
10 |
Zheng X Y, Lee H, Weisgraber T H, et al. Ultralight, ultrastiff mechanical metamaterials[J]. Science, 2014, 344: 1373
doi: 10.1126/science.1252291
pmid: 24948733
|
11 |
Bauer J, Schroer A, Schwaiger R, et al. Approaching theoretical strength in glassy carbon nanolattices[J]. Nat. Mater., 2016, 15: 438
doi: 10.1038/nmat4561
pmid: 26828314
|
12 |
Zhao S, Hou W T, Hao Y L, et al. Influence of annealing treatment on microstructure and mechanical properties of graded structure Ti-6Al-4V alloys[J]. Rare Met. Mater. Eng., 2017, 46(suppl.1) : 195
|
|
赵 朔, 侯文韬, 郝玉琳 等. 退火处理对梯度多孔Ti-6Al-4V合金组织和力学性能的影响[J]. 稀有金属材料与工程, 2017, 46(): 195
|
13 |
Yang K, Wang J, Jia L, et al. Additive manufacturing of Ti-6Al-4V lattice structures with high structural integrity under large compressive deformation[J]. J. Mater. Sci. Technol., 2018, 35: 303
doi: 10.1016/j.jmst.2018.10.029
|
14 |
Huang J F, Yong Q L, Sun X J, et al. Influence of heat treatment process on microstructure and tensile property of Ti55531 titanium alloy[J]. Mater. Mech. Eng., 2014, 38(8): 20
|
|
黄剑锋, 雍岐龙, 孙新军 等. 热处理工艺对Ti55531钛合金显微组织与拉伸性能的影响[J]. 机械工程材料, 2014, 38(8): 20
|
15 |
Jones N G, Dashwood R J, Dye D, et al. Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr[J]. Mater. Sci. Eng., 2008, A490: 369
|
16 |
Min X H, Xu F, Sun S Y. Effects of heat treatment processes on microstructure and tensile properties of Ti55531 alloy[J]. Mater. Mech. Eng., 2015, 39(11): 14
|
|
闵新华, 徐 锋, 孙书英. 热处理工艺对Ti55531合金组织和拉伸性能的影响[J]. 机械工程材料, 2015, 39(11): 14
|
17 |
Liu Y J, Wang H L, Li S J, et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting[J]. Acta Mater., 2017, 126: 58
doi: 10.1016/j.actamat.2016.12.052
|
18 |
Khorev A I. Alloying and heat treatment of structural (α + β) titanium alloys of high and superhigh strength[J]. Russ. Eng. Res., 2010, 30: 682
doi: 10.3103/S1068798X10070075
|
19 |
Ivasishin O M, Markovsky P E, Semiatin S L, et al. Aging response of coarse-and fine-grained β titanium alloys[J]. Mater. Sci. Eng., 2005, A405: 296
|
20 |
Gerd L, James C W. Titanium[M]. Germany: Die Deutsche Bibliothek, 2003: 6
|
21 |
Chao Q, Thomas S, Birbilis N, et al. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel[J]. Mater. Sci. Eng., 2021, A821: 141611
|
22 |
Bertsch K M, de Bellefon G M, Kuehl B, et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L[J]. Acta Mater., 2020, 199: 19
doi: 10.1016/j.actamat.2020.07.063
|
23 |
Wang Q J, Sun Y L, Shuang Y X, et al. Aging-hardening behavior and phase transition kinetics of a novel β-Ti alloy[J]. Chin. J. Rare Met., 2019, 43: 1103
|
|
王庆娟, 孙亚玲, 双翼翔 等. 新型β钛合金的时效机制和相变动力学研究[J]. 稀有金属, 2019, 43: 1103
|
24 |
Guan J, Liu J R, Lei J F, et al. The relationship of heat treatment-microstructures-mechanical properties of the TC18 titanium alloy[J]. Chin. J. Mater. Res., 2009, 23: 77
|
|
官 杰, 刘建荣, 雷家峰 等. TC18钛合金的组织和性能与热处理制度的关系[J]. 材料研究学报, 2009, 23: 77
|
25 |
Li Y, Zhang L, Zhu Z W, et al. Influence of heat treatment on microstructure and mechanical properties of a high-strength Zr-Ti alloy[J]. Acta. Metall. Sin., 2014, 50: 19
doi: 10.3724/SP.J.1037.2013.00498
|
|
李 烨, 张 龙, 朱正旺 等. 热处理对一种高强Zr-Ti合金组织和力学性能的影响[J]. 金属学报, 2014, 50: 19
|
26 |
Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy[J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
|
27 |
Lütjering G. Property optimization through microstructural control in titanium and aluminum alloys[J]. Mater. Sci. Eng., 1999, A263: 117
|
28 |
Suri S, Viswanathan G B, Neeraj T, et al. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy[J]. Acta Mater., 1999, 47: 1019
doi: 10.1016/S1359-6454(98)00364-4
|
29 |
Wu W H, Xiao D M, Yang Y Q, et al. Analysis on powder adhesion problems in selective laser melting forming process[J]. Hot Work. Technol., 2016, 45(24): 43
|
|
吴伟辉, 肖冬明, 杨永强 等. 激光选区熔化成型过程的粉末粘附问题分析[J]. 热加工工艺, 2016, 45(24): 43
|
30 |
Wu W H, Yang Y Q, Mao X, et al. Sidewall precision analysis of metal part formed by selective laser melting[A]. Proceedings of 2015 Optics and Precision Engineering Forum [C]. Changchun: Science and Technology Press, 2015: 164
|
|
吴伟辉, 杨永强, 毛 星 等. 激光选区熔化增材制造零件侧壁成型精度分析[A]. 2015光学精密工程论坛论文集 [C]. 长春: 科技出版社, 2015: 164
|
31 |
Pugno N, Ciavarella M, Cornetti P, et al. A generalized Paris' law for fatigue crack growth[J]. J. Mech. Phys. Solids, 2006, 54: 1333
doi: 10.1016/j.jmps.2006.01.007
|
32 |
Li H F. Investigation on fracture toughness and crack growth mechanism of high-strength steels[D]. Hefei: University of Science and Technology of China, 2019
|
|
李鹤飞. 高强钢断裂韧性与裂纹扩展机制研究[D]. 合肥: 中国科学技术大学, 2019
|
33 |
Wen M P, Pang H Y, Tang M F, et al. Toughness measurement of explosive based on fracture energy of the stress-strain curve[J]. Chin. J. Energ. Mater., 2015, 23: 351
|
|
温茂萍, 庞海燕, 唐明峰 等. 基于应力应变曲线的断裂能参数表征炸药韧性[J]. 含能材料, 2015, 23: 351
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|