Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels
DING Hua1,2,3(), ZHANG Yu3, CAI Minghui1,3, TANG Zhengyou1,3
1School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 3Key Laboratory of Lightweight Structural Materials, Liaoning Province, Northeastern University, Shenyang 110819, China
Cite this article:
DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels. Acta Metall Sin, 2023, 59(8): 1027-1041.
Weight reduction of materials is an eternal topic. Recently, Fe-Mn-Al-C steels with low density and good comprehensive properties have attracted considerable interests in the fields of material research and industries. In Fe-Mn-Al-C steels, various microstructures can be produced and various mechanical properties can be achieved by rationally designing alloying compositions and process parameters. In the new-generation lightweight, high-strength Fe-Mn-Al-C steels, microstructural evolution and deformation mechanisms possess many characteristics that differ from those in other steels, and several novel aspects in physical metallurgy are involved and require to be thoroughly researched. In this paper, recent progress on the role of alloying elements, the relationship between microstructures and mechanical properties, and deformation mechanisms was reviewed and the future directions of research are proposed. To provide a solid foundation for the development and applications of the new type of Fe-Mn-Al-C lightweight steels, alloy design, microstructural design and control, quantitative analysis of deformation mechanisms, and forming and service properties should be focused.
Fig.1 Schematics showing the atomic position in the ordered lattices of a Fe-Mn-Al-C system[30] (a) κ phase (b) B2 phase (c) D03 phase
Fig.2 XRD spectra (a) and micrographs of Fe-11Mn-10Al-1.25C steel after annealing at 1000oC (b), 900oC (c), and 800oC (d)[43] (D—diameter of phase, subscripts γ, α, and GB-κ represent corresponding γ, α phases, and κ phase at grain boun-daries; inset in Fig.1c shows the magnified microstructure)
Alloy (mass fraction / %)
YS / MPa
UTS / MPa
TE / %
Phase
ρ / (g·cm-3)
Γ / (mJ·m-2)
Ref.
Fe-28Mn-9Al-0.8C
440
840
100
γ
6.78
85
[7]
Fe-30.4Mn-8Al-1.2C
1020
1125
41
γ + κ
-
-
[87]
Fe-20Mn-9Al-0.6C
514
806
46
γ + α
6.84
70
[23]
Fe-28Mn-12Al-1.0C
730
1000
~55
γ + α + κ
6.50
110
[3]
Fe-25.7Mn-10.6Al-1.2C
1251
1387
43
γ + α + κ
-
-
[12]
Fe-27Mn-12Al-0.8C
812
955
42
γ + δ + κ + B2 + D03
6.53
92
[30]
Fe-18Mn-10Al-0.8C
711
979
38
γ + α + κ + B2 + D03
6.88
77.9
[16]
Fe-11Mn-10Al-1.25C
1041
1097
29
γ + α + κ
-
-
[42]
Table 1 Mechanical properties and phase constituents of austenite and austenite-based duplex lightweight steels[3,7,12,16,23,30,42,87]
Fig.3 Comparisons of tensile strength and total elongation of Fe-Mn-Al-C-X lightweight ste-els[14,19,40,59-63,69,71-73,80]
Fig.4 Deformed microstructures of the compositionally complex steel (CCS) at 1.5% strain[62] (a) LAADF-STEM image showing the dislocations (in bright contrast) (b, c) zoom-in image of the marked region in Fig.5a (b), dislocations are highlighted by the blue arrows, austenite (γ) matrix and κ-cabide are identified by fast Fourier transform (FFT) patterns, and B2 phase is detected by EDS maps (c). Dislocations cut through γ matrix and κ-carbide, whereas the bypassing mechanism is shown for the B2 phase
Fig.5 Misrostructures of Fe-25.7Mn-10.6Al-1.2C steel[12] (a) EBSD characterization of the γ matrix, recry-stallizaed microstructure being illustrated by the red arrows (b) dark-field TEM image of intragranular κ-carbide in the recrystallized grain
1
Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater Sci., 2017, 89: 345
doi: 10.1016/j.pmatsci.2017.05.002
2
Ye J S. An investigation of 15Mn26Al4 low-temperature steel [J]. Acta. Metall. Sin., 1977, 13: 149
叶基石. 15Mn26Al4低温钢的研究 [J]. 金属学报, 1977, 13: 149
3
Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J]. Steel Res. Int., 2006, 77: 627
doi: 10.1002/srin.2006.77.issue-9-10
4
Liu C Q, Peng Q C, Xue Z L, et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel [J], Mater. Rep., 2019, 33: 2572
Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng., 2008, A496: 417
8
Yoo J D, Hwang S W, Park K T. Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel [J]. Mater. Sci. Eng., 2009, A508: 234
9
Park K T, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition [J]. Mater. Sci. Eng., 2010, A527: 3651
10
Park K T. Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature [J]. Scr. Mater., 2013, 68: 375
doi: 10.1016/j.scriptamat.2012.09.031
11
Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides [J]. Mater. Sci. Technol., 2014, 30: 1099
doi: 10.1179/1743284714Y.0000000515
12
Zhang J L, Raabe D, Tasan C C. Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics [J]. Acta Mater., 2017, 141: 374
doi: 10.1016/j.actamat.2017.09.026
13
Dong X Z, Wang D, Thoudden-Sukumar P, et al. Hydrogen-associated decohesion and localized plasticity in a high-Mn and high-Al two-phase lightweight steel [J]. Acta Mater., 2022, 239: 118296
doi: 10.1016/j.actamat.2022.118296
14
Hwang J H, Trang T T T, Lee O, et al. Improvement of strength- ductility balance of B2-strengthened lightweight steel [J]. Acta Mater., 2020, 191: 1
doi: 10.1016/j.actamat.2020.03.022
15
Zhang L F, Song R B, Zhao C, et al. Work hardening behavior involving the substructural evolution of an austenite-ferrite Fe-Mn-Al-C steel [J]. Mater. Sci. Eng., 2015, A640: 225
16
Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels [J]. Mater. Sci. Eng., 2016, A652: 69
17
Zhao C, Song R B, Zhang L F, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel [J]. Mater. Des., 2016, 91: 348
doi: 10.1016/j.matdes.2015.11.115
18
Ren P, Chen X P, Cao Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel [J]. Mater. Sci. Eng., 2019, A752: 160
19
Zhang J L, Hu C H, Zhang Y H, et al. Microstructures, mechanical properties and deformation of near-rapidly solidified low-density Fe-20Mn-9Al-1.2C-xCr steels [J]. Mater. Des., 2020, 186: 108307
doi: 10.1016/j.matdes.2019.108307
20
Ren P, Chen X P, Wang C Y, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel [J]. Acta. Metall. Sin., 2022, 58: 771
doi: 10.11900/0412.1961.2020.00509
Chen P, Zhang Q C, Zhang F, et al. Critical role of κ-carbides in the multi-stage work hardening process of a lightweight austenitic steel [J]. Mater. Charact., 2023, 200: 112853
doi: 10.1016/j.matchar.2023.112853
22
Wang H, Cao Z X, Gao Z Y, et al. Synergetic strengthening from dynamic slip band-grain boundary interaction in a low-density FeMnAlC steel [J]. Mater. Sci. Eng., 2023, A862: 144498
23
Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel having the reduced specific weight [J]. Mater. Sci. Eng., 2011, A528: 5196
24
Sutou Y, Kamiya N, Umino R, et al. High-strength Fe-20Mn-Al-C-based alloys with low density [J]. ISIJ Int., 2010, 50: 893
doi: 10.2355/isijinternational.50.893
25
Sohn S S, Song H, Suh B C, et al. Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization [J]. Acta Mater., 2015, 96: 301
doi: 10.1016/j.actamat.2015.06.024
26
Etienne A, Massardier-Jourdan V, Cazottes S, et al. Ferrite effects in Fe-Mn-Al-C triplex steels [J]. Metall. Mater. Trans., 2014, 45A: 324
27
Sohn S S, Lee B J, Lee S, et al. Effect of annealing temperature on microstructural modification and tensile properties in 0.35C-3.5Mn-5.8Al lightweight steel [J]. Acta Mater., 2013, 61: 5050
doi: 10.1016/j.actamat.2013.04.038
28
Ko K K, Bae H J, Park E H, et al. A feasible route to produce 1.1 GPa ferritic-based low-Mn lightweight steels with ductility of 47% [J]. J. Mater. Sci. Technol., 2022, 117: 225
doi: 10.1016/j.jmst.2021.11.052
29
Seo C H, Kwon K H, Choi K, et al. Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel [J]. Scri. Mater., 2012, 66: 519
doi: 10.1016/j.scriptamat.2011.12.026
30
Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature [J]. Mater. Sci. Eng., 2013, A586: 276
31
Wu Z Q. Investigations on the microstructures-properties relationship and deformation mechanism in high strength and high ductility low density steels [D]. Shenyang: Northeastern University, 2015
吴志强. 高强度高塑性低密度钢的组织性能和变形机制研究 [D]. 沈阳: 东北大学, 2015
32
Kim C W, Kwon S I, Lee B H, et al. Atomistic study of nano-sized κ-carbide formation and its interaction with dislocations in a cast Si added FeMnAlC lightweight steel [J]. Mater. Sci. Eng., 2016, A673: 108
33
Choo W K, Kim J H, Yoon J C. Microstructural change in austenitic Fe-30.0wt% Mn-7.8wt% Al-1.3wt% C initiated by spinodal decomposition and its influence on mechanical properties [J]. Acta Mater., 1997, 45: 4877
doi: 10.1016/S1359-6454(97)00201-2
34
Wang C S, Hwang C N, Chao C G, et al. Phase transitions in an Fe-9Al-30Mn-2.0C alloy [J]. Scr. Mater., 2007, 57: 809
doi: 10.1016/j.scriptamat.2007.07.007
35
Sato K, Tagawa K, Inoue Y. Age hardening of an Fe-30Mn-9Al-0.9C alloy by spinodal decomposition [J]. Scr. Metall., 1988, 22: 899
doi: 10.1016/S0036-9748(88)80071-1
36
Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel [J]. Scr. Mater., 2010, 63: 1028
doi: 10.1016/j.scriptamat.2010.07.036
37
Chang K M, Chao C G, Liu T F. Excellent combination of strength and ductility in an Fe-9Al-28Mn-1.8C alloy [J]. Scr. Mater., 2010, 63: 162
doi: 10.1016/j.scriptamat.2010.03.038
38
Han K H, Yoon J C, Choo W K. TEM evidence of modulated structure in Fe-Mn-Al-C austenitic alloys [J]. Scr. Metall., 1986, 20: 33
doi: 10.1016/0036-9748(86)90208-5
39
Cheng W C, Cheng C Y, Hsu C W, et al. Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe-C-Mn-Al austenitic steel [J]. Mater. Sci. Eng., 2015, A642: 128
40
Wang Z W, Lu W J, Zhao H, et al. Formation mechanism of κ-carbides and deformation behavior in Si-alloyed FeMnAlC lightweight steels [J]. Acta Mater., 2020, 198: 258
doi: 10.1016/j.actamat.2020.08.003
41
Zhang J L, Jiang Y S, Zheng W S, et al. Revisiting the formation mechanism of intragranular κ-carbide in austenite of a Fe-Mn-Al-Cr-C low-density steel [J]. Scr. Mater., 2021, 199: 113836
doi: 10.1016/j.scriptamat.2021.113836
42
Liu D G, Cai M H, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel [J]. Mater. Sci. Eng., 2018, A715: 25
43
Liu D G, Ding H, Cai M H, et al. Mechanical behaviors of a lower-Mn-added Fe-11Mn-10Al-1.25C lightweight steel with distinguished microstructural features [J]. Mater. Lett., 2019, 242: 131
doi: 10.1016/j.matlet.2019.01.115
44
Liu D G, Ding H, Han D, et al. Effect of grain interior and grain boundary κ-carbides on the strain hardening behavior of medium-Mn lightweight steels [J]. Mater. Sci. Eng., 2023, A871: 144861
45
Ishida K, Ohtani H, Satoh N, et al. Phase equilibria in Fe-Mn-Al-C alloys [J]. ISIJ Int., 1990, 30: 680
doi: 10.2355/isijinternational.30.680
46
Kim M S, Kang Y B. Development of thermodynamic database for high Mn-high Al steels: Phase equilibria in the Fe-Mn-Al-C system by experiment and thermodynamic modeling [J]. Calphad, 2015, 51: 89
doi: 10.1016/j.calphad.2015.08.004
47
Chin K G, Lee H J, Kwak J H, et al. Thermodynamic calculation on the stability of (Fe, Mn)3AlC carbide in high aluminum steels [J]. J. Alloys Compd., 2010, 505: 217
doi: 10.1016/j.jallcom.2010.06.032
48
Fartushna I, Bajenova I, Khvan A, et al. Experimental investigation of solidification and isothermal sections at 1000 and 1100oC in the Al-Fe-Mn-C system with special attention to the kappa-phase [J]. J. Alloys Compd., 2018, 735: 1211
doi: 10.1016/j.jallcom.2017.11.288
49
Rahnama A, Dashwood R, Sridhar S. A phase-field method coupled with CALPHAD for the simulation of ordered κ-carbide precipitates in both disordered γ and α phases in low density steel [J]. Comput. Mater. Sci., 2017, 126: 152
50
Song W W, Zhang W, von Appen J, et al. κ-phase formation in Fe-Mn-Al-C austenitic steels [J]. Steel Res. Int., 2015, 86: 1161
doi: 10.1002/srin.v86.10
51
Drouven C, Hallstedt B, Song W, et al. Experimental observation of κ-phase formation sequences by in-situ synchrotron diffraction [J]. Mater. Lett., 2019, 241: 111
doi: 10.1016/j.matlet.2019.01.062
52
Dey P, Nazarov R, Dutta B, et al. Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C κ carbides [J]. Phys. Rev., 2017, 95B: 104108
53
Liu L B, Li C M, Yang Y, et al. A simple method to produce austenite-based low-density Fe-20Mn-9Al-0.75C steel by a near-rapid solidification process [J]. Mater. Sci. Eng., 2017, A679: 282
54
Ma T, Li H R, Gao J X, et al. Effect of alloying elements and aging treatment on the properties of kappa-carbide in Fe-Mn-Al-C low density steesl: A review [J]. Mater. Rep., 2020, 34: 11153
Han D, Ding H, Liu D G, et al. Influence of C content and annealing temperature on the microstructures and tensile properties of Fe-13Mn-8Al-(0.7, 1.2)C steels [J]. Mater. Sci. Eng., 2020, A785:139286
56
Chen X P, Li W J, Ren P, et al. Effects of C content on microstructure and properties of Fe-Mn-Al-C low-density steels [J]. Acta Metall. Sin., 2019, 55: 951
Li M C, Chang H, Kao P W, et al. The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys [J]. Mater. Chem. Phys., 1999, 59: 96
doi: 10.1016/S0254-0584(99)00026-7
58
Huang H, Gan D, Kao P W. Effect of alloying additions on the κ phase precipitation in austenitic Fe-Mn-Al-C alloys [J]. Scr. Metall. Mater., 1994, 30: 499
doi: 10.1016/0956-716X(94)90610-6
59
Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
doi: 10.1038/nature14144
60
Zhang B G, Zhang X M, Liu H T. Precipitation behavior of B2 and κ-carbide during aging and its effect on mechanical properties in Al-containing high strength steel [J]. Mater. Charact., 2021, 178: 111291
doi: 10.1016/j.matchar.2021.111291
61
Kim C, Hong H U, Jang J H, et al. Reverse partitioning of Al from κ-carbide to the γ-matrix upon Ni addition and its strengthening effect in Fe-Mn-Al-C lightweight steel [J]. Mater. Sci. Eng., 2021, A820: 141563
62
Wang Z W, Lu W J, Zhao H, et al. Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation [J]. Sci. Adv., 2020, 6: eaba9543
doi: 10.1126/sciadv.aba9543
63
Park G, Nam C H, Zargaran A, et al. Effect of B2 morphology on the mechanical properties of B2-strengthened lightweight steels [J]. Scr. Mater., 2019, 165: 68
doi: 10.1016/j.scriptamat.2019.02.013
64
Mishra B, Sarkar R, Singh V, et al. Microstructure and deformation behaviour of austenitic low-density steels: The defining role of B2 intermetallic phase [J]. Materialia, 2021, 20: 101198
doi: 10.1016/j.mtla.2021.101198
65
Yang M X, Yuan F P, Xie Q G, et al. Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel [J]. Acta Mater., 2016, 109: 213
doi: 10.1016/j.actamat.2016.02.044
66
Rahnama A, Spooner S, Sridhar S. Control of intermetallic nano-particles through annealing in duplex low density steel [J]. Mater. Lett., 2017, 189: 13
doi: 10.1016/j.matlet.2016.11.020
67
Bartlett L N, Van Aken D C, Medvedeva J, et al. An atom probe study of kappa carbide precipitation and the effect of silicon addition [J]. Metall. Mater. Trans., 2014, 45A: 2421
68
Kim C W, Terner M, Lee J H, et al. Partitioning of C into κ-carbidesby Si addition and its effect on the initial deformation mechanism of Fe-Mn-Al-C lightweight steels [J]. J. Alloys Compd., 2019, 775: 554
doi: 10.1016/j.jallcom.2018.10.104
69
Zhi H H, Li J S, Li W M, et al. Simultaneously enhancing strength-ductility synergy and strain hardenability via Si-alloying in medium-Al FeMnAlC lightweight steels [J]. Acta Mater., 2023, 245: 118611
doi: 10.1016/j.actamat.2022.118611
70
Yang L, Li Z M, Li X, et al. An enhanced Fe-28Mn-9Al-0.8C lightweight steel by coprecipitation of nanoscale Cu-rich and κ-carbide particles [J]. Steel Res. Int., 2020, 91: 1900665
doi: 10.1002/srin.v91.7
71
Chen Z, Liu M X, Zhang J K, et al. Effect of annealing treatment on microstructures and properties of austenite-based Fe-28Mn-9Al-0.8C lightweight steel with addition of Cu [J]. China Foundry, 2021, 18: 207
doi: 10.1007/s41230-021-1026-6
72
Xie Z Q, Hui W J, Zhang Y J, et al. Effect of Cu and solid solution temperature on microstructure and mechanical properties of Fe-Mn-Al-C low-density steels [J]. J. Mater. Res. Technol., 2022, 18: 1307
doi: 10.1016/j.jmrt.2022.03.077
73
Song H, Yoo J, Kim S H, et al. Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels [J]. Acta Mater., 2017, 135: 215
doi: 10.1016/j.actamat.2017.06.035
74
Han K H. The microstructures and mechanical properties of an austenitic Nb-bearing Fe-Mn-Al-C alloy processed by controlled rolling [J]. Mater. Sci. Eng., 2000, A279: 1
75
Park B H, Kim C W, Lee K W, et al. Role of Nb addition on microstructural stability and deformation behaviors of FeMnAlC lightweight steels at 400oC [J]. Metall. Mater. Trans., 2021, 52A: 4191
76
Ma T, Gao J X, Li H R, et al. Microband-induced plasticity in a Nb content Fe-28Mn-10Al-C low density steel [J]. Metals, 2021, 11: 345
doi: 10.3390/met11020345
77
Liu M X, Li X, Zhang Y H, et al. Multiphase precipitation and its strengthening mechanism in a V-containing austenite-based low density steel [J]. Intermetallics, 2021, 134: 107179
doi: 10.1016/j.intermet.2021.107179
78
Liu M X, Li X, Zhang Y H, et al. Precipitation of κ-carbide in a V-containing austenite-based lightweight steel [J]. Metall. Mater. Trans., 2022, 53A: 1231
79
Hu X L, Li Y L, Liu D G, et al. Mechanical behavior of Fe-12Mn-7Al-0.6C-(V) lightweight steels [J]. China Metall., 2019, 29(2): 39
Moon J, Ha H Y, Kim K W, et al. A new class of lightweight, stainless steels with ultra-high strength and large ductility [J]. Sci. Rep., 2020, 10: 12140
doi: 10.1038/s41598-020-69177-7
pmid: 32699336
81
Tuan Y H, Wang C S, Tsai C Y, et al. Corrosion behaviors of austenitic Fe-30Mn-7Al-xCr-1C alloys in 3.5%NaCl solution [J]. Mater. Chem. Phys., 2009, 114: 595
doi: 10.1016/j.matchemphys.2008.10.009
82
Huang C F, Ou K L, Chen C S, et al. Research of phase transformation on Fe-8.7Al-28.3Mn-1C-5.5Cr alloy [J]. J. Alloys Compd., 2009, 488: 246
doi: 10.1016/j.jallcom.2009.08.097
83
Moon J, Park S J, Jang J H, et al. Atomistic investigations of κ-carbide precipitation in austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition [J]. Scr. Mater., 2017, 127: 97
doi: 10.1016/j.scriptamat.2016.08.036
84
Chen C S, Lin C T, Peng P W, et al. Effects of cobalt content on the microstructures of Fe-9Al-30Mn-1C-xCo alloys [J]. J. Alloys Compd., 2010, 493: 346
doi: 10.1016/j.jallcom.2009.12.100
85
Zhao T, Chen C, Wang Y F, et al. Effect of Nb-V microalloying on low-cycle fatigue property of Fe-Mn-Al-C austenitic steel [J]. J. Mater. Res. Technol., 2023, 23: 3711
doi: 10.1016/j.jmrt.2023.02.020
86
Moon J, Jo H H, Park S J, et al. Ti-bearing lightweight steel with large high temperature ductility via thermally stable multi-phase microstructure [J]. Mater. Sci. Eng., 2021, A808: 140954
87
Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Mater., 2017, 140: 258
doi: 10.1016/j.actamat.2017.08.049
88
Cheng X N, Dai Q X, Wang A D. Stacking-fault energy and ε-martensite transformation of austenitic steels [J]. J. Iron Steel Res., 2003, 15(2): 55
doi: 10.1016/S1006-706X(08)60012-6
Park K T, Kim G, Kim S K, et al. On the transitions of deformation modes of fully austenitic steels at room temperature [J]. Met. Mater. Int., 2010, 16: 1
doi: 10.1007/s12540-010-0001-3
90
Byun T S. On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels [J]. Acta Mater., 2003, 51: 3063
doi: 10.1016/S1359-6454(03)00117-4
91
Welsch E, Ponge D, Hafez Haghighat S M, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J]. Acta Mater., 2016, 116: 188
doi: 10.1016/j.actamat.2016.06.037
92
Ding H, Li H Y, Wu Z Q, et al. Microstructural evolution and deformation behaviors of Fe-Mn-Al-C steels with different stacking fault energies [J]. Steel Res. Int., 2013, 84: 1288
doi: 10.1002/srin.201300052
93
Haase C, Zehnder C, Ingendahl T, et al. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel [J]. Acta Mater., 2017, 122: 332
doi: 10.1016/j.actamat.2016.10.006
94
Ardell A J, Huang J C. Antiphase boundary energies and the transition from shearing to looping in alloys strengthened by ordered precipitates [J]. Philos. Mag. Lett., 1988, 58: 189
doi: 10.1080/09500838808214752
95
Yao M J, Dey P, Seol J B, et al. Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe-Mn-Al-C low density steel [J]. Acta Mater., 2016, 106: 229
doi: 10.1016/j.actamat.2016.01.007
96
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
97
Wu X L, Zhu Y T. Heterostructured metallic materials: Plastic deformation and strain hardening [J]. Acta Metall. Sin., 2022, 58: 1349
doi: 10.11900/0412.1961.2022.00327
Wei X, Fu L M, Liu S C, et al. Deformation behavior of constituent phases and the affected factors in dual-phase steel [J]. Chin. J. Mater. Res., 2013, 27: 665
Latypov M I, Shin S, De Cooman B C, et al. Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP + TRIP steel [J]. Acta Mater., 2016, 108: 219
doi: 10.1016/j.actamat.2016.02.001
100
Lim H, Dingreville R, Deibler L A, et al. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations [J]. Comput. Mater. Sci., 2016, 117: 437
doi: 10.1016/j.commatsci.2016.02.022
101
Tasan C C, Diehl M, Yan D, et al. Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys [J]. Acta Mater., 2014, 81: 386
doi: 10.1016/j.actamat.2014.07.071