Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (5): 623-635    DOI: 10.11900/0412.1961.2021.00248
Current Issue | Archive | Adv Search |
Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting
HOU Juan1,2(), DAI Binbin2, MIN Shiling2, LIU Hui2, JIANG Menglei2, YANG Fan2
1State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd., Shenzhen 518172, China
2Academy of Materials and Chemistry, University of Shanghai Science and Technology, Shanghai 200082, China
Cite this article: 

HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting. Acta Metall Sin, 2023, 59(5): 623-635.

Download:  HTML  PDF(4867KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As one of the most promising metal additive manufacturing methods, selective laser melting (SLM) is very attractive for fabricating complex-shaped structure components of austenitic stainless steels in the nuclear field. SLMed austenitic 304L stainless steel has been demonstrated to have excellent mechanical properties and superior corrosion resistance due to the unique hierarchical microstructure produced by the ultrafast cooling rate and high-thermal gradient. Scanning tracks (T) and depositing layers (L) are key factors for geometry design by affecting the processing efficiency and the solidification structure of the components. Hence, it is essential to clarify the effecting mechanism of sample size and geometry on material performance. In this work, samples of different sizes are designed to study the influence of geometry on the microstructure and mechanical properties of 304L stainless steel components made via SLM. Various solidification conditions are achieved by varying the temperature gradients and cooling rates by adjusting T and L. Metallographic microscopic observations in samples with various T × L combinations demonstrate that a columnar structure is formed along the build direction, which is significantly impacted by the geometry effect. The columnar grains grow preferentially along the heat dissipation direction with an increase in the sample size. The columnar grains gradually change from having a low length-diameter ratio (LDR) with a rice grain shape to a higher LDR with a short rod-like shape and then a long strip shape. Grain coarsening could also be identified along with the formation of “long strip” columnar grains. Moreover, consistent microstructure evolution behavior is observed in large-sized samples. The influence of geometry on the mechanical properties is examined via tensile testing to demonstrate the decrease in yield strength and increased plastic elongation with the rise in sample size. As the sample size increases, the mechanical properties become consistent. The comprehensive analysis concludes that grain size and columnar grains play critical roles in determining the mechanical properties according to the Hall-Petch relationship. In larger-sized samples, “long strip” columnar grains with a high proportion could lead to a decrease in material strength and an increase in plasticity. The geometry mechanism affecting the solidification process, microstructure formation, and mechanical properties of 304L stainless steel processed by SLM is explored by combining the solidification rate and thermal gradient simulation results using ANSYS ADDITIVE.

Key words:  selective laser melting      304L stainless steel      build geometry      solidification theory      mechanical property     
Received:  18 June 2021     
ZTFLH:  TG142.7  
Fund: National Natural Science Foundation of China(52073176);Shenzhen International Cooperation Research Science and Technology Program(GJHZ20200731095203011);State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment Opening Project(CSO-102-001)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00248     OR     https://www.ams.org.cn/EN/Y2023/V59/I5/623

Fig.1  Morphology of the gas-atomized powders-304L for selective laser melting (SLM) (a) and schematic of printing composing (b) (T represents scanning track, L represents depositing layer)
SampleCNPSCrCuMnNiOSiMoFe
Powder0.0060.0130.0270.00118.950.0330.0169.480.0290.0560.87Bal.
SLMed0.0150.0130.0270.00319.700.0320.0549.620.0310.0650.83Bal.
Table 1  Chemical compositions of 304L stainless steel powder and SLM 304L stainless steel
LT
1220100200300
5T1-L5T2-L5----
10--T20-L10--T300-L10
100--T20-L100T100-L100T200-L100T300-L100
500--T20-L500T100-L500T200-L500T300-L500
700--T20-L700T100-L700T200-L700T300-L700
1000--T20-L1000T100-L1000T200-L1000T300-L1000
Table 2  Abbreviations of different dimensional samples
Fig.2  Scanning strategies of rotation angle of 67° between adjacent layers (a) and “skywriting” scan mode along the set scanning path (b)
Fig.3  Tensile test specimen (unit: mm) (a) and schematic of SLM (b)
Fig.4  Low (a, c) and high (b, d) magnified OM images of SLM 304L ‘fish scale’ morphology (a) and columnar grains (b) with melt pool boundary on longitudinal plane, and laser exposure traces (c) and equiaxed grains (d) on horizontal plane
Fig.5  OM images of SLM 304L stainless steel samples with different T × L sizes along the building direction
(a) T1-L5 (b) T2-L5 (c) T20-L10 (d) T20-L100 (e) T20-L700 (f) T20-L1000
Fig.6  OM images of microstructures of T100 series samples in SLM 304L stainless steel
(a) T100-L100 (b) T100-L500 (c) T100-700 (d) T100-L1000
SampleGrain size / μmRice-shaped columnarNarrow-short columnarStrip columnar
(0-50 μm2) / %(51-150 μm2) / %(≥ 151 μm2) / %
T100-L10013 ± 225.250.724.1
T100-L50016 ± 221.345.633.1
T100-L70018 ± 118.742.338.0
T100-L100020 ± 217.645.047.4
Table 3  Statistical results of grain size and columnar crystal morphology of T100 series samples
Fig.7  OM images of microstructures of T200 series samples in SLM 304L stainless steel
(a) T200-L100 (b) T200-L500 (c) T200-700 (d) T200-L1000
SampleGrain size / μmRice-shaped columnarNarrow-short columnaStrip columnar
(0-50 μm2) / %(51-150 μm2) / %(≥ 151 μm2) / %
T200-L10015 ± 220.946.232.9
T200-L50019 ± 218.744.337.0
T200-L70020 ± 217.345.137.6
T200-L100022 ± 116.142.441.5
Table 4  Statistical results of grain size and columnar crystal morphology of T200 series samples
Fig.8  OM images of microstructures of T300 series samples in SLM 304L stainless steel
(a) T300-L100 (b) T300-L500 (c) T300-700 (d) T300-L1000
SampleGrain size / μmRice-shaped columnarNarrow-short columnarStrip columnar
(0-50 μm2) / %(51-150 μm2) / %(≥ 151 μm2) / %
T300-L10018 ± 212.037.051.0
T300-L50020 ± 211.732.056.3
T300-L70023 ± 210.530.059.5
T300-L100025 ± 19.723.167.2
Table 5  Statistical results of grain size and columnar crystal morphology of T300 series samples
Fig.9  XRD spectra of T100 (a), T200 (b), and T300 (c) series samples with different sizes
Fig.10  Phase distribution images by EBSD in SLM 304L stainless steel of T300-L100 (a) and T300-L1000 (b)
Color online
Fig.11  Stress-strain curves of L100 (a), T100 (b), T200 (c), and T300 (d) series samples
SampleYield strengthUltimate tensileElongation
MPastrength / MPa%
T100-L100541.5 ± 17691.6 ± 1452.7 ± 0.6
T100-L500478.7 ± 13667.0 ± 1661.0 ± 0.2
T100-L700475.7 ± 15654.7 ± 2060.1 ± 0.9
T100-L1000477.8 ± 9665.9 ± 2366.6 ± 0.3
T200-L100504.6 ± 15682.8 ± 1754.9 ± 0.7
T200-L500476.6 ± 8656.1 ± 1959.9 ± 0.9
T200-L700470.2 ± 11649.1 ± 2263.3 ± 0.4
T200-L1000464.2 ± 15646.3 ± 1467.0 ± 0.5
T300-L100486.8 ± 13674.6 ± 2456.6 ± 0.8
T300-L500470.9 ± 18669.2 ± 1859.3 ± 0.9
T300-L700472.9 ± 8667.8 ± 1663.0 ± 1.0
T300-L1000459.8 ± 12662.7 ± 1663.1 ± 1.2
Table 6  Strengthes and ductilities of SLM 304L samples with different sizes
XYZGRG × RG / R
mmmmmmK·m-1m·s-1K·s-1K·s·m-2
51151168970.3075157381016640315
51251430650.3010154815117086594
51547892720.3078147409415559688
Table 7  Simulation results of solidification rate (R) and temperature gradient (G) in SLM process
Fig.12  Schematics showing the change of columnar crystal morphology and proportion with the different build geometries
(a) T100-L100
(b) T200-L100
(c) T300-L1000
1 Das S, Wohlert M, Beaman J J, et al. Processing of titanium net shapes by SLS/HIP[J]. Mater. Des., 1999, 20: 115
doi: 10.1016/S0261-3069(99)00017-5
2 Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance[J]. Int. J. Fatigue, 2013, 48: 300
doi: 10.1016/j.ijfatigue.2012.11.011
3 Ni M, Chen C, Wang X J, et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing[J]. Mater. Sci. Eng., 2017, A701: 344
4 Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
5 Witte F. The history of biodegradable magnesium implants: A review[J]. Acta Biomater., 2010, 6: 1680
doi: 10.1016/j.actbio.2010.02.028 pmid: 20172057
6 Shuai C J, Yang Y W, Wu P, et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy[J]. J. Alloys Compd., 2017, 691: 961
doi: 10.1016/j.jallcom.2016.09.019
7 Anderson S, Baca G, O'Connor M. NEET-AMM final technical report on laser direct manufacturing (LDM) for nuclear power components[R]. United States: n. p., 2015. doi:10.2172/1233481
8 Li P F, Gong Y D, Xu Y C, et al. Inconel-steel functionally bimetal materials by hybrid directed energy deposition and thermal milling: Microstructure and mechanical properties[J]. Arch. Civ. Mech. Eng., 2019, 19: 820
doi: 10.1016/j.acme.2019.03.002
9 Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021 pmid: 29115290
10 Trevisan F, Calignano F, Aversa A, et al. Additive manufacturing of titanium alloys in the biomedical field: Processes, properties and applications[J]. J. Appl. Biomater. Funct. Mater., 2018, 16: 57
11 Hou J, Chen W, Chen Z E, et al. Microstructure, tensile properties and mechanical anisotropy of selective laser melted 304L stainless steel[J]. J. Mater. Sci. Technol., 2020, 48: 63
doi: 10.1016/j.jmst.2020.01.011
12 Cordero Z C, Meyer III H M, Nandwana P, et al. Powder bed charging during electron-beam additive manufacturing[J]. Acta Mater., 2017, 124: 437
doi: 10.1016/j.actamat.2016.11.012
13 Guan Q F, Ji L, Cai J, et al. Surface microstructure and properties of 3Cr13 martensitic stainless steel after high current pulsed electron beam bombardment[J]. J. Jilin Univ. (Eng. Technol. Ed.), 2014, 44: 712
关庆丰, 季 乐, 蔡 杰 等. 强流脉冲电子束轰击作用下3Cr13不锈钢的微观结构及性能[J]. 吉林大学学报(工学版), 2014, 44: 712
14 El Cheikh H, Courant B, Branchu S, et al. Direct Laser Fabrication process with coaxial powder projection of 316L steel. Geometrical characteristics and microstructure characterization of wall structures[J]. Opt. Lasers Eng., 2012, 50: 1779
doi: 10.1016/j.optlaseng.2012.07.002
15 Antonysamy A A, Meyer J, Prangnell P B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting[J]. Mater. Character., 2013, 84: 153
doi: 10.1016/j.matchar.2013.07.012
16 Wang D, Yang Y Q, Su X B, et al. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM[J]. Int. J. Adv. Manuf. Technol., 2012, 58: 1189
doi: 10.1007/s00170-011-3443-y
17 Gu H, Wei C, Li L, et al. Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting[J]. Int. J. Heat Mass Transf., 2020, 151: 119458
doi: 10.1016/j.ijheatmasstransfer.2020.119458
18 Hussein A, Hao L, Yan C Z, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Mater. Des., 2013, 52: 638
doi: 10.1016/j.matdes.2013.05.070
19 Du L, Gu D D, Dai D H, et al. Relation of thermal behavior and microstructure evolution during multi-track laser melting deposition of Ni-based material[J]. Opt. Laser Technol., 2018, 108: 207
doi: 10.1016/j.optlastec.2018.06.042
20 Tang X, Zhang S, Zhang C H, et al. Optimization of laser energy density and scanning strategy on the forming quality of 24CrNiMo low alloy steel manufactured by SLM[J]. Mater. Character., 2020, 170: 110718
doi: 10.1016/j.matchar.2020.110718
21 Song Y N, Sun Q D, Guo K, et al. Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting[J]. Mater. Sci. Eng., 2020, A793: 139879
22 Rajeshkumar R, Niranjani V L, Devakumaran K, et al. Fusion boundary microstructure evolution and mechanical properties of cold metal transfer welded dissimilar A5754 and A5083 joint[J]. Mater. Lett., 2021, 284: 128877
doi: 10.1016/j.matlet.2020.128877
23 Kim C K, Kim J H, Hong H U, et al. Behavior of weld pool convection and columnar-to-equiaxed grain transition in gas tungsten arc welds of ferritic stainless steels with different aluminum contents[J]. J. Mater. Process. Technol., 2021, 289: 116946
doi: 10.1016/j.jmatprotec.2020.116946
24 Chen W, Hou J, Huang A J. Effect of heat treatment on microstructure and mechanical property of 304L stainless steel prepared by selective laser melting[J]. Trans. Mater. Heat Treat., 2020, 41(3): 103
陈 伟, 侯 娟, 黄爱军. 热处理对选区激光熔化304L不锈钢组织和力学性能的影响[J]. 材料热处理学报, 2020, 41(3): 103
25 Geng S N, Jiang P, Shao X Y, et al. Heat transfer and fluid flow and their effects on the solidification microstructure in full-penetration laser welding of aluminum sheet[J]. J. Mater. Sci. Technol., 2020, 46: 50
doi: 10.1016/j.jmst.2019.10.027
26 Leicht A, Klement U, Hryha E. Effect of build geometry on the microstructural development of 316L parts produced by additive manufacturing[J]. Mater. Character., 2018, 143: 137
doi: 10.1016/j.matchar.2018.04.040
27 Chong Y, Deng G Y, Gao S, et al. Yielding nature and Hall-Petch relationships in Ti-6Al-4V alloy with fully equiaxed and bimodal microstructures[J]. Scr. Mater., 2019, 172: 77
doi: 10.1016/j.scriptamat.2019.07.015
28 Kang B, Lee J, Ryu H J, et al. Microstructure, mechanical property and Hall-Petch relationship of a light-weight refractory Al0.1CrNbVMo high entropy alloy fabricated by powder metallurgical process[J]. J. Alloys Compd., 2018, 767: 1012
doi: 10.1016/j.jallcom.2018.07.145
29 Zhang K, Li Z D, Sun F L, et al. Effect of cooling rate on microstructure evolution and mechanical properties of Ti-V-Mo complex microalloyed steel[J]. Acta Metall. Sin., 2018, 54: 31
doi: 10.11900/0412.1961.2017.00202
张 可, 李昭东, 隋凤利 等. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54: 31
30 Wang X, Liu R C, Cao R X, et al. Effect of cooling rate on boride and room temperature tensile properties of β-solidifying γ-TiAl alloys[J]. Acta Metall. Sin., 2020, 56: 203
王 希, 刘仁慈, 曹如心 等. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56: 203
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[15] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
No Suggested Reading articles found!