Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (6): 767-776    DOI: 10.11900/0412.1961.2021.00314
Research paper Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing
WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi()
State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
Cite this article: 

WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing. Acta Metall Sin, 2023, 59(6): 767-776.

Download:  HTML  PDF(4014KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Owing to its outstanding advantages, such as low specific gravity, high specific strength, and good machinability, 2024 aluminum alloy has been used as various load components in the aerospace field and has become an important lightweight material. The properties of the 2024 aluminum alloy are highly correlated with its microstructures. Accordingly, in this study, 2024 aluminum alloy deposited specimens were fabricated using wire arc additive manufacturing. Further, the microstructures and mechanical properties of the deposited specimens were investigated in different regions. The layered characteristics could be observed macroscopically in the deposited specimens, and a single deposition layer was divided into two regions: interlayer and innerlayer. The grain morphology changed from equiaxed grains in the innerlayer region to columnar grains in the interlayer region. The deposited specimens mainly included α-Al, θ-Al2Cu, and S-Al2CuMg phases. In the nonequilibrium solidification process of additive manufacturing, the deposited specimens presented element segregation. The distribution of Mg in the Al matrix was uniform for the innerlayer region. However, Cu was segregated as eutectics at the grain boundary in the interlayer region. The average tensile strength, yield strength, and elongation of deposited specimens were (323.5 ± 6.6) MPa, (178.7 ± 6.2) MPa, and (9.03 ± 0.67)%, respectively, which were higher than those of cast annealing 2024 aluminum alloy. Owing to the difference in the microstructure, the innerlayer and interlayer regions showed different crack propagation behavior. The cracks in the interlayer region propagated along the distribution path of eutectics, showing intergranular fracture, and the crack propagation mode in the innerlayer region changed to transgranular fracture.

Key words:  Al-Cu-Mg alloy      wire arc additive manufacturing      microstructure      mechanical property     
Received:  30 July 2021     
ZTFLH:  TG40  
Fund: Fundamental Research Funds for the Central Universities(DUT21YG116)
Corresponding Authors:  MA Guangyi, professor, Tel:(0411)84707625, E-mail: gyma@dlut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00314     OR     https://www.ams.org.cn/EN/Y2023/V59/I6/767

MaterialCuMgMnTiFeSiZnCrAl
2024 alloy standard3.80-4.901.20-1.800.30-0.90≤ 0.15≤ 0.50≤ 0.15≤ 0.15≤ 0.15Bal.
Deposited wire4.591.560.670.090.100.090.050.02Bal.
WAAM deposited specimen4.591.380.660.090.090.090.040.02Bal.
Table 1  Chemical compositions of 2024 wire and deposited specimen
Fig.1  Schematic of deposited process (TIG—tungsten inert gas) (a) and dimensions of tensile test specimen (unit: mm) (b) for WAAM 2024 aluminum alloy
Fig.2  Morphologies of WAAM 2024 aluminum alloy deposited specimen at different positions
Fig.3  EBSD analyses of WAAM 2024 aluminum alloy deposited specimen, paralleled to the building direction
Fig.4  Solidification pathways of Al-Cu-Mg alloy (a) and XRD spectra of 2024 aluminum alloy wire and WAAM deposited specimen (b) (Inset in Fig.4b shows the locally enlarged spectrum)
Fig.5  SEM image of WAAM 2024 aluminum alloy deposited specimen and EDS results of points P1 and P2 (a), line scanning of bright-white phase showed in the inset (b), and line scanning of gray phase showed in the inset (c)
Fig.6  SEM images of WAAM 2024 aluminum alloy deposited specimen
Fig.7  Element mapping of WAAM 2024 aluminum alloy deposited specimen
Fig.8  Microhardness distributions of WAAM 2024 aluminum alloy deposited specimen (a) and single layer (b) (Insets in Fig.8b show the microstructures in the innerlayer and interlayer regions)
Fig.9  Tensile curves of WAAM 2024 aluminum alloy deposited specimens under room temperature (a) and properties comparison of 2024 aluminum alloy prepared by different methods (b)
Fig.10  SEM images of fracture surface (a), SEM image and EDS of interlayer region (b), and SEM image and EDS of innerlayer region (c) of WAAM 2024 aluminum alloy tensile specimen (Figs.10a1 and a2 show the locally enlarged images in Fig.10a)
Fig.11  Crack propagation of tensile fracture of WAAM 2024 aluminum alloy tensile specimen
1 Starke E A, Staley J T. Application of modern aluminum alloys to aircraft [J]. Prog. Aeosp. Sci., 1996, 32: 131
2 Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257
3 Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater., 2017, 132: 82
doi: 10.1016/j.actamat.2017.04.026
4 Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics [J]. Aeron. Manuf. Technol., 2018, 61(3): 74
李 权, 王福德, 王国庆 等. 航空航天轻质金属材料电弧熔丝增材制造技术 [J]. 航空制造技术, 2018, 61(3): 74
5 Gu D D, Zhang H M, Chen H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components [J]. Chin. J. Lasers, 2020, 47: 0500002
顾冬冬, 张红梅, 陈洪宇 等. 航空航天高性能金属材料构件激光增材制造 [J]. 中国激光, 2020, 47: 0500002
6 Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
7 Sun J X, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能 [J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
8 Yang G, Peng H J, Li C F, et al. Microstructure and mechanical property research on wire + arc additive manufactured 5356-aluminum alloy [J]. Chin. J. Rare Met., 2020, 44: 249
杨 光, 彭晖杰, 李长富 等. 电弧增材制造5356铝合金的组织与性能研究 [J]. 稀有金属, 2020, 44: 249
9 Li C D, Gu H M, Wang W, et al. Microstructure and properties of ZL114A aluminum alloy prepared by wire arc additive manufacturing [J]. Rare Met. Mater. Eng., 2019, 48: 2917
李承德, 顾惠敏, 王 伟 等. 电弧增材制造ZL114A铝合金的组织与性能 [J]. 稀有金属材料与工程, 2019, 48: 2917
10 Gu J L, Ding J L, Williams S W, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys [J]. J. Mater. Process. Technol., 2016, 230: 26
doi: 10.1016/j.jmatprotec.2015.11.006
11 Gu J L, Ding J L, Williams S W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy [J]. Mater. Sci. Eng., 2016, A651: 18
12 Cong B Q, Ding J L, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy [J]. Int. J. Adv. Manuf. Technol., 2015, 76: 1593
doi: 10.1007/s00170-014-6346-x
13 Gu J L, Ding J L, Cong B Q, et al. The influence of wire properties on the quality and performance of wire + arc additive manufactured aluminium parts [J]. Adv. Mater. Res., 2014, 1081: 210
14 Cong B Q, Sun H Y, Peng P, et al. Porosity control of wire + arc additively manufactured Al-6.3Cu alloy deposition using AC-GTAW process [J]. Rare Met. Mater. Eng., 2017, 46: 1359
从保强, 孙红叶, 彭 鹏 等. Al-6.3Cu AC-GTAW电弧增材成形的气孔控制 [J]. 稀有金属材料与工程, 2017, 46: 1359
15 Weingarten C, Buchbinder D, Pirch N, et al. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg [J]. J. Mater. Process. Technol., 2015, 221: 112
doi: 10.1016/j.jmatprotec.2015.02.013
16 Bai J Y, Fan C L, Yang Y C, et al. Microstructures of 2219-Al thin-walled parts produced by shaped metal deposition [J]. Trans. China Weld. Inst., 2016, 37(6): 124
柏久阳, 范成磊, 杨雨晨 等. 2219铝合金TIG填丝堆焊成形薄壁试样组织特征 [J]. 焊接学报, 2016, 37(6): 124
17 Ahuja B, Karg M, Nagulin K Y, et al. Fabrication and characterization of high strength Al-Cu alloys processed using laser beam melting in metal powder bed [J]. Phys. Procedia, 2014, 56: 135
doi: 10.1016/j.phpro.2014.08.156
18 Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment [J]. Mater. Sci. Eng., 2014, A590: 153
19 Qian M, Cao P, Easton M A, et al. An analytical model for constitutional supercooling-driven grain formation and grain size prediction [J]. Acta Mater., 2010, 58: 3262
doi: 10.1016/j.actamat.2010.01.052
20 Chakraborty S, Sarkar S, Dutta P. Effect of constitutional supercooling on the numerical solution of species concentration distribution in laser surface alloying [J]. Metall. Mater. Trans., 2001, 32B: 969
21 Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
22 Chen F Y, Jie W Q. Study of microsegregation in Al-Cu-Zn ternary alloys by experiment and scheil model [J]. Acta Metall. Sin., 2004, 40: 664
陈福义, 介万奇. Al-Cu-Zn合金微观偏析的实验和Scheil模型研究 [J]. 金属学报, 2004, 40: 664
23 Bocklund B, Bobbio L D, Otis R A, et al. Experimental validation of Scheil-Gulliver simulations for gradient path planning in additively manufactured functionally graded materials [J]. Materialia, 2020, 11: 100689
doi: 10.1016/j.mtla.2020.100689
24 Shi D K. Fundamentals of Materials Science [M]. 2nd Ed., Beijing: China Machine Press, 2003: 232
石德珂. 材料科学基础 [M]. 第 2版, 北京: 机械工业出版社, 2003: 232
25 Marlaud T, Deschamps A, Bley F, et al. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys [J]. Acta Mater., 2010, 58: 248
doi: 10.1016/j.actamat.2009.09.003
26 Bai J Y, Fan C L, Lin S B, et al. Effects of thermal cycles on microstructure evolution of 2219-Al during GTA-additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2016, 87: 2615
doi: 10.1007/s00170-016-8633-1
27 Staley J T, Haupin W. Aluminum and aluminum alloys [M]. New York: John Wiley & Sons Inc, 2000: 186
28 Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 401
doi: 10.1016/j.pmatsci.2015.03.002
29 Bai J Y, Fan C L, Lin S B, et al. Mechanical properties and fracture behaviors of GTA-additive manufactured 2219-Al after an especial heat treatment [J]. J. Mater. Eng. Perform., 2017, 26: 1808
doi: 10.1007/s11665-017-2627-5
30 Liu D H, Wu D J, Ma G Y, et al. Effect of post-deposition heat treatment on laser-TIG hybrid additive manufactured Al-Cu alloy [J]. Virtual Phys. Prototyp., 2020, 15: 445
doi: 10.1080/17452759.2020.1818021
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!