Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (5): 657-667    DOI: 10.11900/0412.1961.2021.00237
Current Issue | Archive | Adv Search |
Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy
LIU Manping1,2(), XUE Zhoulei1, PENG Zhen1(), CHEN Yulin1, DING Lipeng3,4, JIA Zhihong3,4
1School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
3Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 211816, China
4School of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
Download:  HTML  PDF(3315KB) 
Export:  BibTeX | EndNote (RIS)      

Al-Mg-Si alloys are widely used in automotive body panels and parts of the engine owing to their low density, medium strength, high specific strength, good corrosion resistance and other characteristics. Currently, there are many studies on the precipitation behavior of undeformed Al-Mg-Si aluminum alloy, but there is a lack of research on the precipitation evolution and precipitation strengthening mechanism of ultra-fine grained 6061 aluminum alloy at different post-aging temperatures. In this study, the microstructure and mechanical properties of an ultrafine grain 6061 aluminum alloy produced by combining the equal channel angular pressing (ECAP) and post aging methods was comparatively evaluated via TEM, XRD, microhardness tests, and tensile tests. The results indicated that the average grain size of the alloy after two ECAP passes was refined to 210 nm. The average grain size of the alloy after the ECAP pass at 80oC and 20 min post aging was 278 nm; moreover, the fine needle β'', L phase, and Q' phase precipitates at nanoscale were dispersed in the matrix. Furthermore, the tensile and yield strengths were 514 and 483 MPa, respectively, while maintaining a remarkably uniform elongation of 15.1%. These results indicate that numerous dislocations introduced by ECAP in the matrix provide a location for the nucleation of the precipitate, which accelerates the precipitation kinetics during the post aging process. The high strength and toughness of the ECAP alloy after low temperature post aging can be attributed to the grain refinement strengthening, dislocation strengthening, and nanoprecipitation strengthening. Thus, the evolution of the aging precipitates during the ECAP and post aging alloy was analyzed.

Key words:  Al-Mg-Si-Cu alloy      ultrafine grain      low temperature post-aging      microstructure      mechanical property     
Received:  02 June 2021     
ZTFLH:  TG146.21  
Fund: National Natural Science Foundation of China(U1710124);National Natural Science Foundation of China(51871035);National Natural Science Foundation of China(52001159);Open Fund of the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University(32115014)
Corresponding Authors:  LIU Manping, professor, Tel:(0511)88797783, E-mail:;PENG Zhen, associate professor, Tel:(0511)88797783, E-mail:   

Cite this article: 

LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy. Acta Metall Sin, 2023, 59(5): 657-667.

URL:     OR

Fig.1  XRD spectra of 6061 aluminum alloy at T6 state (a) and ECAPed and post-aged state (b) (ECAP—equal channel angular pressing, RT—room temperature)
nm%1014 m-2
ECAP at RT2100.169.19
ECAP + 80oC, 20 min2110.159.05
ECAP + 80oC, 180 min4880.112.78
ECAP + 110oC, 10 min2570.146.81
ECAP + 170oC, 5 min3950.145.12
ECAP + 170oC, 180 min7700.081.27
Table 1  XRD analyses of the ECAPed and post-aged alloy
Fig.2  Mechanical properties of 6061 aluminum alloy after ECAPed and post-aged states
(a) hardness curves of ECAP + post-aged at 80, 110, and 170oC specimens
(b) engineering stress-strain curves of the ECAPed and post-aged specimens
(c) normalized work hardening rates against true strain
Fig.3  TEM images and grain size distributions of ultrafine-grained 6061 aluminum alloy (a-c) TEM bright field (a) and dark field (b) images, and grain size distribution (c) of the ECAPed specimen (Inset in Fig.3a is the corresponding SAED pattern) (d, e) TEM bright field image (d) and grain size distribution (e) of the ECAP + 80oC, 20 min post-aged specimen
Fig.4  TEM analyses of T6 state (a) and ECAP + 80oC, 20 min post-aged states (b-e) 6061 aluminum alloy (a-c) TEM bright field images (Insets show the corresponding SAED and FFT pattern, respectively) (d) interaction between β'' and dislocation in the post-aged specimen (e) statistical measurements from Fig.4b showing the width and the length of the β'' precipitates
Fig.5  HRTEM images of the ECAPed specimen (a), ECAP + 80oC, 20 min post-aged specimen (c), ECAP + 170oC, 180 min post-aged specimen (d), and inverse fast Fouier transform (IFFT) map of lattice fringe at the black box in Fig.5a (b) (The ellipses show examples of dislocation dipoles. The black circles mark interstitial loops and the white circles mark vacancy loops)
Fig.6  Schematics of the evolution of the internal precipitation of the alloy in different states
Color online
(a) solid-solution treatment (SST) (b) ECAPed
(c) high temperature (> 110oC) post-aging after ECAP (d) low temperature (< 80oC) post-aging after ECAP
Stateσexp / MPaσ0.2 / MPaσgs / MPaσρ / MPaσprec / MPa
ECAPed + 80oC, 20 min48347195 (20.2%)147 (31.2%)229 (48.6%)
ECAPed + 110oC, 10 min43443493 (21.4%)129 (29.7%)212 (48.8%)
ECAPed + 170oC, 5 min36537082 (22.2%)113 (30.5%)175 (47.3%)
Table 2  Contributions and proportions of strengthening mechanisms to the strength of the post-aging alloy
State/treatmentσ0.2 / MPaUTS / MPaEf / %Ref.
6061 ECAP at RT + post-aging48351415.1This work
Al-Mg-Si-Cu rolling+aging45248710.0[10]
6061 ECAP at RT + post-aging41145017.8[13]
6061 under-aging + coldrolling + re-aging5425608.5[27]
6061 HPT at RT6057056.3[34]
6061 Friction stir processing4355052.1[35]
AA6060 HPT at RT4755256.0[36]
6061 HPT at RT6606905.5[37]
6061 HPT at RT + post-aging45548515.0[38]
6061 multi directional forging + aging4094728.9[39]
6101 hydrostatic extrusion + aging3453545.5[40]
6061 accumulative roll bonding + aging450-6.5[41]
Al-Mg-Si-Cu pre-deformation + aging4354507.1[42]
Table 3  Comprehensive comparisons of tensile properties of 6000 series Al alloys[10,13,27,34-42]
Fig.7  Comprehensive comparisons of yield strength and uniform elongation of Al-Mg-Si alloys[10,13,27,34-42]
Color online
1 Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry[J]. Mater. Sci. Eng., 2000, A280: 37
2 Liu M P, Chen J, Lin Y J, et al. Microstructure, mechanical properties and wear resistance of an Al-Mg-Si alloy produced by equal channel angular pressing[J]. Prog. Nat. Sci. Mater. Int., 2020, 30: 485
doi: 10.1016/j.pnsc.2020.07.005
3 Ding L P, Jia Z H, Nie J F, et al. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy[J]. Acta Mater., 2018, 145: 437
doi: 10.1016/j.actamat.2017.12.036
4 Chen J, Pan Q L, Yu X H, et al. Effect of annealing treatment on microstructure and fatigue crack growth behavior of Al-Zn-Mg-Sc-Zr alloy[J]. J. Cent. South Univ., 2018, 25: 961
doi: 10.1007/s11771-018-3797-5
5 Feng L, Pan Q L, Wei L L, et al. Through-thickness inhomogeneity of localized corrosion in 7050-T7451 Al alloy thick plate[J]. J. Cent. South Univ., 2015, 22: 2423
doi: 10.1007/s11771-015-2769-2
6 Liu M P, Wu Z J, Yang R, et al. DSC analyses of static and dynamic precipitation of an Al-Mg-Si-Cu aluminum alloy[J]. Prog. Nat. Sci. Mater. Int., 2015, 25: 153
doi: 10.1016/j.pnsc.2015.02.004
7 Duan Z C, Chinh N Q, Xu C, et al. Developing processing routes for the equal-channel angular pressing of age-hardenable aluminum alloys[J]. Metall. Mater. Trans., 2010, 41A: 802
8 Wang B F, Sun J Y, Zou J D, et al. Mechanical responses, texture and microstructural evolution of high purity aluminum deformed by equal channel angular pressing[J]. J. Cent. South Univ., 2015, 22: 3698
doi: 10.1007/s11771-015-2912-0
9 Liu M P, Xie X F, Zhang Z Y, et al. Deformation-induced solid-state amorphization in a nanostructured Al-Mg alloy processed by high pressure torsion[J]. Mater. Sci. Forum, 2015, 817: 627
doi: 10.4028/
10 Liu C H, Li X L, Wang S H, et al. A tuning nano-precipitation approach for achieving enhanced strength and good ductility in Al alloys[J]. Mater. Des., 2014, 54: 144
doi: 10.1016/j.matdes.2013.08.042
11 Li K, Béché A, Song M, et al. Atomistic structure of Cu-containing β'' precipitates in an Al-Mg-Si-Cu alloy[J]. Scr. Mater., 2014, 75: 86
doi: 10.1016/j.scriptamat.2013.11.030
12 Cerri E, Leo P. Influence of severe plastic deformation on aging of Al-Mg-Si alloys[J]. Mater. Sci. Eng., 2005, A410-411: 226
13 Kim W J, Kim J K, Park T Y, et al. Enhancement of strength and superplasticity in a 6061 Al alloy processed by equal-channel-angular-pressing[J]. Metall. Mater. Trans., 2002, 33A: 3155
14 Hockauf K, Meyer L W, Hockauf M, et al. Improvement of strength and ductility for a 6056 aluminum alloy achieved by a combination of equal-channel angular pressing and aging treatment[J]. J. Mater. Sci., 2010, 45: 4754
doi: 10.1007/s10853-010-4544-y
15 Roven H J, Liu M P, Werenskiold J C. Dynamic precipitation during severe plastic deformation of an Al-Mg-Si aluminium alloy[J]. Mater. Sci. Eng., 2008, A483-484: 54
16 Hockauf M, Meyer L W, Zillmann B, et al. Simultaneous improvement of strength and ductility of Al-Mg-Si alloys by combining equal-channel angular extrusion with subsequent high-temperature short-time aging[J]. Mater. Sci. Eng., 2009, A503: 167
17 Liu Y F, Wang F, Cao Y, et al. Unique defect evolution during the plastic deformation of a metal matrix composite[J]. Scr. Mater., 2019, 162: 316
doi: 10.1016/j.scriptamat.2018.11.038
18 Zhu S Q, Shih H C, Cui X Y, et al. Design of solute clustering during thermomechanical processing of AA6016 Al-Mg-Si alloy[J]. Acta Mater., 2021, 203: 116455
doi: 10.1016/j.actamat.2020.10.074
19 Li P, Lin Q, Zhou Y F, et al. TEM analysis of microstructure evolution process of pure tungsten under high pressure torsion[J]. Acta Metall. Sin., 2019, 55: 521
李 萍, 林 泉, 周玉峰 等. 纯W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55: 521
20 Jiang J W, Liu M P, Liu Y, et al. Microstructure and mechanical properties of 6013 aluminium alloy processed by a combination of ECAP and preaging treatment[J]. Mater. Sci. Forum, 2017, 877: 437
doi: 10.4028/
21 Jia Z H, Ding L P, Cao L F, et al. The influence of composition on the clustering and precipitation behavior of Al-Mg-Si-Cu alloys[J]. Metall. Mater. Trans., 2017, 48A: 459
22 Marioara C D, Andersen S J, Røyset J, et al. Improving thermal stability in Cu-containing Al-Mg-Si alloys by precipitate optimization[J]. Metall. Mater. Trans., 2014, 45A: 2938
23 Man J, Jing L, Jie S G. The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy[J]. J. Alloys Compd., 2007, 437: 146
doi: 10.1016/j.jallcom.2006.07.113
24 Liu M P, Wei J T, Li Y C, et al. Dynamic aging behavior and mechanical properties of an Al-Mg-Si aluminium alloy induced by equal channel angular pressing[J]. Chin. J. Mater. Res., 2016, 30: 721
doi: 10.11901/1005.3093.2016.105
刘满平, 韦江涛, 李毅超 等. 等通道转角挤压Al-Mg-Si铝合金的动态时效特性和力学性能[J]. 材料研究学报, 2016, 30: 721
doi: 10.11901/1005.3093.2016.105
25 Jiang T H, Liu M P, Xie X F, et al. Grain boundary structure of Al-Mg alloys processed by high pressure torsion[J]. Chin. J. Mater. Res., 2014, 28: 371
蒋婷慧, 刘满平, 谢学锋 等. 高压扭转大塑性变形Al-Mg合金中的晶界结构[J]. 材料研究学报, 2014, 28: 371
doi: 10.11901/1005.3093.2013.724
26 Dobatkin S V. On the increase of thermal stability of ultrafine grained materials obtained by severe plastic deformation[J]. Mater. Sci. Forum, 2003, 426-432: 2699
doi: 10.4028/
27 Wang Z X, Li H, Miao F F, et al. Improving the strength and ductility of Al-Mg-Si-Cu alloys by a novel thermo-mechanical treatment[J]. Mater. Sci. Eng., 2014, A607: 313
28 Starink M J, Wang S C. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys[J]. Acta Mater., 2003, 51: 5131
doi: 10.1016/S1359-6454(03)00363-X
29 Dunstan D J, Bushby A J. Grain size dependence of the strength of metals: The Hall-Petch effect does not scale as the inverse square root of grain size[J]. Int. J. Plast., 2014, 53: 56
doi: 10.1016/j.ijplas.2013.07.004
30 Gubicza J, Chinh N Q, Krállics G, et al. Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation[J]. Curr. Appl. Phys., 2006, 6: 194
doi: 10.1016/j.cap.2005.07.039
31 Gutierrez-Urrutia I, Muñoz-Morris M A, Morris D G. Recovery of deformation substructure and coarsening of particles on annealing severely plastically deformed Al-Mg-Si alloy and analysis of strengthening mechanisms[J]. J. Mater. Res., 2006, 21: 329
doi: 10.1557/jmr.2006.0063
32 Muñoz-Morris M A, Oca C G, Morris D G. Mechanical behaviour of dilute Al-Mg alloy processed by equal channel angular pressing[J]. Scr. Mater., 2003, 48: 213
doi: 10.1016/S1359-6462(02)00501-8
33 Deschamps A, Brechet Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy—II. Modeling of precipitation kinetics and yield stress[J]. Acta Mater., 1999, 47: 293
doi: 10.1016/S1359-6454(98)00296-1
34 Moreno-Valle E C, Sabirov I, Perez-Prado M T, et al. Effect of the grain refinement via severe plastic deformation on strength properties and deformation behavior of an Al6061 alloy at room and cryogenic temperatures[J]. Mater. Lett., 2011, 65: 2917
doi: 10.1016/j.matlet.2011.06.057
35 Wang B B, Liu Y D, Xue P, et al. Prepration and mechanical properties of ultrafine-grained 6061 Al-alloy by friction stir process[J]. Chin. J. Mater. Res., 2021, 35: 321
王贝贝, 刘沿东, 薛 鹏 等. 超细晶6061铝合金的搅拌摩擦制备和性能[J]. 材料研究学报, 2021, 35: 321
36 Sha G, Tugcu K, Liao X Z, et al. Strength, grain refinement and solute nanostructures of an Al-Mg-Si alloy (AA6060) processed by high-pressure torsion[J]. Acta Mater., 2014, 63: 169
doi: 10.1016/j.actamat.2013.10.022
37 Nurislamova G, Sauvage X, Murashkin M, et al. Nanostructure and related mechanical properties of an Al-Mg-Si alloy processed by severe plastic deformation[J]. Philos. Mag. Lett., 2008, 88: 459
doi: 10.1080/09500830802186938
38 Mohamed I F, Lee S, Edalati K, et al. Aging behavior of Al 6061 alloy processed by high-pressure torsion and subsequent aging[J]. Metall. Mater. Trans., 2015, 46A: 2664
39 Rao P N, Singh D, Brokmeier H G, et al. Effect of ageing on tensile behavior of ultrafine grained Al 6061 alloy[J]. Mater. Sci. Eng., 2015, A641: 391
40 Majchrowicz K, Pakieła Z, Chrominski W, et al. Enhanced strength and electrical conductivity of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusion[J]. Mater. Charact., 2018, 135: 104
doi: 10.1016/j.matchar.2017.11.023
41 Rezaei M R, Toroghinejad M R, Ashrafizadeh F. Effects of ARB and ageing processes on mechanical properties and microstructure of 6061 aluminum alloy[J]. J. Mater. Process. Technol., 2011, 211: 1184
doi: 10.1016/j.jmatprotec.2011.01.023
42 Gu Y, Chen J H, Liu C H, et al. Effect of pre-deformation on age- hardening and microstructure in Al-Mg-Si-Cu alloy[J]. Acta Metall. Sin., 2015, 51: 1400
doi: 10.11900/0412.1961.2015.00113
顾 媛, 陈江华, 刘春辉 等. 预变形对Al-Mg-Si-Cu合金时效硬化和显微结构的影响[J]. 金属学报, 2015, 51: 1400
[1] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[2] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[3] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[4] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[5] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[6] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[7] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[8] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[9] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[10] XIONG Tianying, WANG Jiqiang. Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences[J]. 金属学报, 2023, 59(4): 537-546.
[11] LI Dianzhong, WANG Pei. Tailoring Microstructures of Metals[J]. 金属学报, 2023, 59(4): 447-456.
[12] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[13] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[14] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!