Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (7): 961-968    DOI: 10.11900/0412.1961.2022.00438
Research paper Current Issue | Archive | Adv Search |
Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating
YUAN Jianghuai1,2, WANG Zhenyu2, MA Guanshui2, ZHOU Guangxue2, CHENG Xiaoying1, WANG Aiying2()
1School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
2Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Cite this article: 

YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating. Acta Metall Sin, 2023, 59(7): 961-968.

Download:  HTML  PDF(2192KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the rapid advancements in high-tech aeroengines and gas turbines, surface protective coatings are of increasing interest for enhancing the mechanical and corrosive performances of blade components under harsh high-temperature conditions. Owing to the unique nanolaminate structure, Cr2AlC coating, a typical Cr-Al-C ceramic comprising MAX phases, provides an excellent combination of metallic and ceramic properties, including high-temperature oxidation resistance and superior damage tolerance. In this work, Cr2AlC coatings were achieved on nickel-based superalloy substrates using a hybrid deposition system with a cathodic arc and magnetron sputtering source and subsequent annealing. Particularly, the effect of microstructure evolution on the mechanical properties of Cr2AlC coating was studied under various thermal annealing temperatures of 1073, 1123, 1173, and 1223 K for 2 h. The phase structure, surface morphology, cross-sectional morphology, and elemental distribution of the coatings were characterized by XRD, SEM, and EDS. The mechanical properties, including the hardness and toughness of the coatings, were tested by nanoindentation and Vickers indentation. The results showed that the Cr2AlC MAX phase was decomposed and transformed into Cr2Al, Cr7C3, and Cr27C6 phases at higher annealing temperatures, and element diffusion of the coatings was also observed. Moreover, it was noted that the transition in the phase structure did not lead to the misfit of the interface, and the coatings maintained both a high hardness of 11 GPa and elastic modulus of 280 GPa, regardless of the annealing process. The slight decrease in toughness for annealed coatings could be attributed in the formation of brittle chromium carbides and Al element diffusion. Such Cr2AlC MAX phase coatings are promising candidates as protective materials for wide applications in harsh high-temperatures applications.

Key words:  Cr2AlC coating      phase-structure evolution      thermal stability      mechanical property      GH4169 nickel-based superalloy     
Received:  05 September 2022     
ZTFLH:  TG178  
Fund: National Natural Science Foundation of China(52025014);National Natural Science Foundation of China(52171090);National Natural Science Foundation of China(52101109);Ningbo Natural Science Foundation(2021J220)
Corresponding Authors:  WANG Aiying, professor, Tel: (0574)86685170, E-mail: aywang@nimte.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00438     OR     https://www.ams.org.cn/EN/Y2023/V59/I7/961

Fig.1  Schematic of hybrid cathodic arc/magnetron device
Fig.2  XRD spectra of the Cr2AlC coatings before and after annealing at different temperatures for 2 h
SampleAnnealingPhase
temperature / K
S0-Cr2AlC
S11073Cr2AlC, Cr2Al, Cr7C3
S21123Cr7C3, Cr2Al, NiAl
S31173Cr23C6, Cr7C3, NiAl
S41223Cr23C6, Al2O3, NiAl
Table 1  Phase compositions of Cr2AlC coatings before and after annealing at different temperatures
PhaseDebye temperature / KHardness / GPa
Ref.Ref.Ref.Ref.Ref.Ref.
[23][24][25][23][26][27]
Cr7C373156264613.518.318.0
Cr23C674467469110.113.216.5
Table 2  Comparative results of Debye temperature and hardness of Cr7C3 and Cr23C6[23-27]
Fig.3  SEM surface images of samples S1 (a), S2 (b), S3 (c), and S4 (d); and EDS elemental maps of Cr (e), Al (f), C (g), and O (h) in sample S4
Fig.4  Cross-sectional SEM images and corresponding EDS elemental maps of samples S1 (a), S2 (b), S3 (c), and S4 (d)
Fig.5  Load-displacement curves of samples S1-S4
SampleH / GPaE / GPaH / E(H 3 / E 2) / GPa
S112.39313.430.0400.020
S213.53330.740.0420.024
S311.12286.400.0390.017
S414.46345.170.0420.026
Table 3  Hardness (H), elastic modulus (E), H / E, and H 3 / E 2 of samples S1-S4
Fig.6  Vickers indentation morphologies of samples S1 (a), S2 (b), S3 (c), and S4 (d)
Fig.7  Schematic of the effect of the phase-structure evolution on mechanical properties of Cr2AlC coating
1 Qu X M, Zhang Y K, Liu J. Numerical simulation on residual stress field of flat-topped laser oblique shocking of Ni-based alloy GH4169 [J]. Adv. Mater. Sci. Eng., 2020, 2020: 8824824
2 Akca E, Gursel A. A review on superalloys and IN718 nickel-based INCONEL superalloy [J]. Period. Eng. Nat. Sci., 2015, 3: 15
3 Berger O. The correlation between structure, multifunctional properties and application of PVD MAX phase coatings. Part III. Multifunctional applications [J]. Surf. Eng., 2020, 36: 303
doi: 10.1080/02670844.2019.1656861
4 Darolia R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: Critical review of challenges, progress and prospects [J]. Int. Mater. Rev., 2019, 64: 355
doi: 10.1080/09506608.2018.1516713
5 Ma G S, Yuan J H, Chen R D, et al. Balancing the corrosion resistance and conductivity of Cr-Al-C coatings via annealing treatment for metal bipolar plates [J]. Appl. Surf. Sci., 2022, 597: 153670
doi: 10.1016/j.apsusc.2022.153670
6 Tian Z H, Zhang P G, Liu Y S, et al. Research progress and outlook of metal whisker spontaneous growth on MAX phase substrates [J]. Acta Metall. Sin., 2022, 58: 295
田志华, 张培根, 刘玉爽 等. MAX相表面金属晶须自发生长现象的研究现状与展望 [J]. 金属学报, 2022, 58: 295
doi: 10.11900/0412.1961.2021.00119
7 Li W T, Wang Z Y, Zhang D, et al. Preparation of Ti2AlC coating by the combination of a hybrid cathode arc/magnetron sputtering with post-annealing [J]. Acta Metall. Sin., 2019, 55: 647
李文涛, 王振玉, 张 栋 等. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层 [J]. 金属学报, 2019, 55: 647
8 Sokol M, Yang J, Keshavan H, et al. Bonding and oxidation protection of Ti2AlC and Cr2AlC for a Ni-based superalloy [J]. J. Eur. Ceram. Soc., 2019, 39: 878
doi: 10.1016/j.jeurceramsoc.2018.10.019
9 Li J J, Qian Y H, Niu D, et al. Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment [J]. Appl. Surf. Sci., 2012, 263: 457
doi: 10.1016/j.apsusc.2012.09.082
10 Go T, Sohn Y J, Mauer G, et al. Cold spray deposition of Cr2AlC MAX phase for coatings and bond-coat layers [J]. J. Eur. Ceram. Soc., 2019, 39: 860
doi: 10.1016/j.jeurceramsoc.2018.11.035
11 Wang Z Y, Ma G S, Liu L L, et al. High-performance Cr2AlC MAX phase coatings: Oxidation mechanisms in the 900-1100oC temperature range [J]. Corros. Sci., 2020, 167: 108492
doi: 10.1016/j.corsci.2020.108492
12 Shamsipoor A, Farvizi M, Razavi M, et al. Hot corrosion behavior of Cr2AlC MAX phase and CoNiCrAlY compounds at 950oC in presence of Na2SO4 + V2O5 molten salts [J]. Ceram. Int., 2021, 47: 2347
doi: 10.1016/j.ceramint.2020.09.077
13 Li H L, Li S B, Du X S, et al. Thermal shock behavior of Cr2AlC in different quenching media [J]. Mater. Lett., 2016, 167: 131
doi: 10.1016/j.matlet.2015.12.160
14 Chen Y, Chu M Y, Wang L J, et al. Synthesis of Cr2AlC by hot pressing and thermodynamic analysis [J]. Chin. J. Rare Met., 2012, 36: 930
陈 洋, 储茂友, 王力军 等. 热压合成Cr2AlC化合物及热力学分析 [J]. 稀有金属, 2012, 36: 930
15 Pang W K, Low I M, O'connor B H, et al. Comparison of thermal stability in MAX 211 and 312 phases [J]. J. Phys: Conf. Ser., 2010, 251: 012025
16 Griseri M, Tunca B, Lapauw T, et al. Synthesis, properties and thermal decomposition of the Ta4AlC3 MAX phase [J]. J. Eur. Ceram. Soc., 2019, 39: 2973
doi: 10.1016/j.jeurceramsoc.2019.04.021
17 Zhang Z R, Qian Y H, Xu J J, et al. Effect of annealing on microstructure evolution and corrosion resistance of an amorphous Cr-Al-C coating [J]. Corros. Sci., 2021, 178: 109062
doi: 10.1016/j.corsci.2020.109062
18 Brüsewitz C, Knorr I, Hofsäss H, et al. Single crystal pillar microcompression tests of the MAX phases Ti2InC and Ti4AlN3 [J]. Scr. Mater., 2013, 69: 303
doi: 10.1016/j.scriptamat.2013.05.002
19 Zha X, Wang N, Jiang F, et al. Performance evaluation of PVD coatings due to sequential indentation tests [J]. Surf. Eng., 2017, 33: 597
doi: 10.1080/02670844.2016.1161947
20 Chen Z P, Cao C H, Wang H P, et al. The deposition of superconducting TiN thin film by using DC magnetron sputtering [J]. Chin. J. Low Temp.Phys., 2017, 39(3): 7
陈志平, 曹春海, 王海萍 等. 直流磁控溅射制备超导TiN薄膜 [J]. 低温物理学报, 2017, 39(3): 7
21 Li J M, Jing J, He J, et al. Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures [J]. Mater. Des., 2020, 193: 108776
doi: 10.1016/j.matdes.2020.108776
22 Zhang H. First-principles study of the electrical, mechanical and thermodynamic properties of a novel MAX phase material Hf2PB [D]. Xiangtan: Xiangtan University, 2018
张 衡. MAX相材料Hf2PB电学、力学和热学性质的第一性原理研究 [D]. 湘潭: 湘潭大学, 2018
23 Sun L, Ji X S, Zhao L, et al. First principles investigation of binary chromium carbides Cr7C3, Cr3C2 and Cr23C6: Electronic structures, mechanical properties and thermodynamic properties under pressure [J]. Materials, 2022, 15: 558
doi: 10.3390/ma15020558
24 Jiang C. First-principles study of structural, elastic, and electronic properties of chromium carbides [J]. Appl. Phys. Lett., 2008, 92: 041909
25 Min T, Gao Y M, Li Y F, et al. First-principles calculations study on the electronic structures, hardness and Debye temperatures of chromium carbides [J]. Rare Met. Mater. Eng., 2012, 41: 271
闵 婷, 高义民, 李烨飞 等. 第一性原理研究碳化铬的电子结构、硬度和德拜温度 [J]. 稀有金属材料与工程, 2012, 41: 271
26 Li Y F, Gao Y M, Xiao B, et al. The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations [J]. J. Alloys Compd., 2011, 509: 5242
doi: 10.1016/j.jallcom.2011.02.009
27 Hirota K, Mitani K, Yoshinaka M, et al. Simultaneous synthesis and consolidation of chromium carbides (Cr3C2, Cr7C3 and Cr23C6) by pulsed electric-current pressure sintering [J]. Mater. Sci. Eng., 2005, A399: 154
28 Azina C, Mráz S, Greczynski G, et al. Oxidation behaviour of V2AlC MAX phase coatings [J]. J. Eur. Ceram. Soc., 2020, 40: 4436
doi: 10.1016/j.jeurceramsoc.2020.05.080
29 Liu J K, Qi J L, Cao J, et al. Study on vacuum brazing of DD3 Ni-base superalloy and Ti3AlC2 ceramic [J]. Trans. China Weld. Inst., 2014, 35(3): 41
刘甲坤, 亓钧雷, 曹 健 等. DD3高温合金与Ti3AlC2陶瓷的真空钎焊 [J]. 焊接学报, 2014, 35(3): 41
30 Ying G B, He X D, Li M W, et al. Effect of Cr7C3 on the mechanical, thermal, and electrical properties of Cr2AlC [J]. J. Alloys Compd., 2011, 509: 8022
doi: 10.1016/j.jallcom.2011.04.134
31 Liu J Z, Zuo X, Wang Z Y, et al. Fabrication and mechanical properties of high purity of Cr2AlC coatings by adjustable Al contents [J]. J. Alloys Compd., 2018, 753: 11
doi: 10.1016/j.jallcom.2018.04.100
32 Dong M L. Study on residual stress of thin films by nanoindentation technology [D]. Harbin: Harbin Engineering University, 2015
董美伶. 基于纳米压痕技术的薄膜残余应力研究 [D]. 哈尔滨: 哈尔滨工程大学, 2015
33 Zhang L, Huang Z F, Chang L, et al. Synthesis of single-phase Cr7C3 bulk with phenolic resin addition by hot pressing and its mechanical properties [J]. Mater. Res. Express, 2017, 4: 086504
34 Jiang D X, Fu Y, Zhang J W, et al. Preparation and properties of alumina ceramic film on Ti-alloy surface [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 469
姜冬雪, 付 颖, 张峻巍 等. 钛合金表面Al2O3陶瓷膜制备及性能研究 [J]. 中国腐蚀与防护学报, 2019, 39: 469
doi: 10.11902/1005.4537.2018.173
35 Shuai J T, Zuo X, Wang Z Y, et al. Erosion behavior and failure mechanism of Ti/TiAlN multilayer coatings eroded by silica sand and glass beads [J]. J. Mater. Sci. Technol., 2021, 80: 179
doi: 10.1016/j.jmst.2021.01.001
36 Wang Y X, Guan W, Fischer C B, et al. Microstructures, mechanical properties and tribological behaviors of amorphous carbon coatings in-situ grown on polycarbonate surfaces [J]. Appl. Surf. Sci., 2021, 563: 150309
doi: 10.1016/j.apsusc.2021.150309
37 Zhang Y, Guo L, Zhao X X, et al. Toughening effect of Yb2O3 stabilized ZrO2 doped in Gd2Zr2O7 ceramic for thermal barrier coatings [J]. Mater. Sci. Eng., 2015, A648: 385
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[9] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[10] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!