|
|
Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels |
WU Xinqiang, RONG Lijian( ), TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu |
CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels. Acta Metall Sin, 2023, 59(4): 502-512.
|
Abstract Structural materials are one of the major factors that restrict the lead-cooled fast reactor construction due to metallic elements that can dissolve in the liquid lead-bismuth eutectic (LBE), which may affect the structure's safety. T91 steel and 316 stainless steel are the leading structural materials for critical equipment such as fuel cladding, reactor vessels, and reactor core internals. The environmental compatibility of those steels with the liquid LBE needs to be systematically evaluated. However, T91 steel and 316 stainless steel suffer from rapid oxidation corrosion in oxygen-saturated LBE at 550oC. T91 steel's corrosion resistance in liquid LBE can be improved by decreasing the oxygen concentration (1.26 × 10-6%, mass fraction), but dissolved corrosion occurred at dissolved oxygen concentration below 1 × 10-6% for T91 steel and 316 stainless steel. T91 steel is sensitive to liquid metal embrittlement, significantly reducing its corrosion fatigue life in the liquid LBE. Compared to the standard (9%-12%)Cr ferritic/martensitic steel and 316 stainless steel, the microalloyed Si enhanced (9%-12%)Cr ferritic/martensitic steel (9Cr-Si and 12Cr-Si) and 316 stainless steel (ASS-Si) have good microstructural stability and comprehensive mechanical properties. The Si-rich oxide formation in liquid LBE improves the oxide film compactness and corrosion resistance. The dissolution corrosion was inhibited in static oxygen-saturation and oxygen-controlled (10-6%-10-7%) flowing liquid LBE (0.3 m/s) at 550oC for 9Cr-Si, 12Cr-Si, and ASS-Si. These alloys are expected to meet the design requirements for a lead-cooled fast reactor.
|
Received: 20 October 2022
|
|
Fund: National Natural Science Foundation of China(52271077);National Natural Science Foundation of China(51871218);LingChuang Research Project of China National Nuclear Corporation, and Youth Innovation Promotion Association CAS(2021189) |
Corresponding Authors:
RONG Lijian, professor, Tel: (024)23971979, E-mail: ljrong@imr.ac.cn
|
1 |
Was G S. Challenges to the use of ion irradiation for emulating reactor irradiation [J]. J. Mater. Res., 2015, 30: 1158
doi: 10.1557/jmr.2015.73
|
2 |
OECD, Nuclear Energy Agency. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies [R]. OECD/NEA No. 6195, 2015
|
3 |
Gong X, Short M P, Auger T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors [J]. Prog. Mater. Sci., 2022, 126: 100920
doi: 10.1016/j.pmatsci.2022.100920
|
4 |
Zhu Z G, Zhang Q, Tan J B, et al. Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550oC: Effects of exposure time and dissolved oxygen concentration [J]. Corros. Sci., 2022, 204: 110405
doi: 10.1016/j.corsci.2022.110405
|
5 |
Yeliseyeva O, Tsisar V, Benamati G. Influence of temperature on the interaction mode of T91 and AISI 316L steels with Pb-Bi melt saturated by oxygen [J]. Corros. Sci., 2008, 50: 1672
doi: 10.1016/j.corsci.2008.02.006
|
6 |
Martinelli L, Dufrenoy T, Jaakou K, et al. High temperature oxidation of Fe-9Cr-1Mo steel in stagnant liquid lead-bismuth at several temperatures and for different lead contents in the liquid alloy [J]. J. Nucl. Mater., 2008, 376: 282
doi: 10.1016/j.jnucmat.2008.02.006
|
7 |
Sapundjiev D, Van Dyck S, Bogaerts W. Liquid metal corrosion of T91 and A316L materials in Pb-Bi eutectic at temperatures 400-600oC [J]. Corros. Sci., 2006, 48: 577
doi: 10.1016/j.corsci.2005.04.001
|
8 |
Klok O, Lambrinou K, Gavrilov S, et al. Effect of deformation twinning on dissolution corrosion of 316L stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500oC [J]. J. Nucl. Mater., 2018, 510: 556
doi: 10.1016/j.jnucmat.2018.08.030
|
9 |
Kurata Y, Futakawa M, Saito S. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550oC [J]. J. Nucl. Mater., 2005, 343: 333
doi: 10.1016/j.jnucmat.2004.07.064
|
10 |
Tsisar V, Schroer C, Wedemeyer O, et al. Effect of structural state and surface finishing on corrosion behavior of 1.4970 austenitic steel at 400 and 500oC in flowing Pb-Bi eutectic with dissolved oxygen [J]. J. Nucl. Eng. Rad. Sci., 2018, 4: 041001
|
11 |
Schroer C, Wedemeyer O, Skrypnik A, et al. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead-bismuth eutectic at 450oC [J]. J. Nucl. Mater., 2012, 431: 105
doi: 10.1016/j.jnucmat.2011.11.014
|
12 |
Tian S J. Growth and exfoliation behavior of the oxide scale on 316L and T91 in flowing liquid lead-bismuth eutectic at 480oC [J]. Oxid. Met., 2020, 93: 183
doi: 10.1007/s11085-019-09953-7
|
13 |
Kolman D G. A review of recent advances in the understanding of liquid metal embrittlement [J]. Corrosion, 2019, 75: 42
doi: 10.5006/2904
|
14 |
Gong X, Stergar E, Marmy P, et al. Tensile fracture behavior of notched 9Cr-1Mo ferritic-martensitic steel specimens in contact with liquid lead-bismuth eutectic at 350oC [J]. Mater. Sci. Eng., 2017, A692: 139
|
15 |
Wang H, Gong X, Xiao J, et al. Liquid metal embrittlement of 12Cr ferritic/martensitic steel thin-walled tubes exposed to liquid lead-bismuth eutectic [J]. Corros. Sci., 2022, 195: 110024
doi: 10.1016/j.corsci.2021.110024
|
16 |
Xue B Q, Tan J B, Zhang Z Y, et al. Effect of temperature on low cycle fatigue behavior of T91 steel in liquid lead-bismuth eutectic environment at 150-550oC [J]. Int. J. Fatigue, 2023, 167: 107344
doi: 10.1016/j.ijfatigue.2022.107344
|
17 |
Gong X, Marmy P, Verlinden B, et al. Low cycle fatigue behavior of a modified 9Cr-1Mo ferritic-martensitic steel in lead-bismuth eutectic at 350oC—Effects of oxygen concentration in the liquid metal and strain rate [J]. Corros. Sci., 2015, 94: 377
doi: 10.1016/j.corsci.2015.02.022
|
18 |
Vogt J B, Bouquerel J, Carle C, et al. Stability of fatigue cracks at 350 oC in air and in liquid metal in T91 martensitic steel [J]. Int. J. Fatigue, 2020, 130: 105265
doi: 10.1016/j.ijfatigue.2019.105265
|
19 |
Gong X, Marmy P, Qin L, et al. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450oC [J]. J. Nucl. Mater., 2016, 468: 289
doi: 10.1016/j.jnucmat.2015.06.021
|
20 |
Van Den Bosch J, Coen G, Almazouzi A, et al. Fracture toughness assessment of ferritic-martensitic steel in liquid lead-bismuth eutectic [J]. J. Nucl. Mater., 2009, 385: 250
doi: 10.1016/j.jnucmat.2008.11.024
|
21 |
Auger T, Gorse D, Hamouche-Hadjem Z, et al. Fracture mechanics behavior of the T91 martensitic steel in contact with liquid lead-bismuth eutectic for application in an accelerator driven system [J]. J. Nucl. Mater., 2011, 415: 293
doi: 10.1016/j.jnucmat.2011.04.021
|
22 |
Weisenburger A, Jianu A, An W, et al. Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550oC [J]. J. Nucl. Mater., 2012, 431: 77
doi: 10.1016/j.jnucmat.2011.11.027
|
23 |
Yurechko M, Schroer C, Skrypnik A, et al Creep-to-rupture of the steel P 92 at 650oC in oxygen-controlled stagnant lead in comparison to air [J]. J. Nucl. Mater., 2013, 432: 78
doi: 10.1016/j.jnucmat.2012.07.029
|
24 |
Yurechko M, Schroer C, Skrypnik A, et al. Creep-to-rupture of 12Cr- and 14Cr-ODS steels in oxygen-controlled lead and air at 650oC [J]. J. Nucl. Mater., 2014, 450: 88
doi: 10.1016/j.jnucmat.2013.09.063
|
25 |
Yurechko M, Schroer C, Wedemeyer O, et al. Creep-rupture tests on chromium-containing conventional and ODS steels in oxygen-controlled Pb and air at 650 oC[J]. Nucl. Eng. Des., 2014, 280: 686
doi: 10.1016/j.nucengdes.2014.06.003
|
26 |
Schroer C, Koch V, Wedemeyer O, et al. Silicon-containing ferritic/martensitic steel after exposure to oxygen-containing flowing lead-bismuth eutectic at 450 and 550oC [J]. J. Nucl. Mater., 2016, 469: 162
doi: 10.1016/j.jnucmat.2015.11.058
|
27 |
Shi H, Jianu A, Fetzer R, et al. Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead [J]. Corros. Sci., 2021, 189: 109593
doi: 10.1016/j.corsci.2021.109593
|
28 |
Li N, Parker S S, Saleh T A, et al. Intermediate temperature corrosion behaviour of Fe-12Cr-6Al-2Mo-0.2Si-0.03Y alloy (C26M) at 300-600oC [J]. Corros. Sci., 2019, 157: 274
doi: 10.1016/j.corsci.2019.05.029
|
29 |
Popovic M P, Chen K, Shen H, et al. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic [J]. Acta Mater., 2018, 151: 301
doi: 10.1016/j.actamat.2018.03.041
|
30 |
Kurata Y. Corrosion behavior of Si-enriched steels for nuclear applications in liquid lead-bismuth [J]. J. Nucl. Mater., 2013, 437: 401
doi: 10.1016/j.jnucmat.2013.02.022
|
31 |
Short M P, Ballinger R G, Hänninen H E. Corrosion resistance of alloys F91 and Fe-12Cr-2Si in lead-bismuth eutectic up to 715oC [J]. J. Nucl. Mater., 2013, 434: 259
doi: 10.1016/j.jnucmat.2012.11.010
|
32 |
Chen L Z, Tsisar V, Wang M, et al. Effect of oxygen on corrosion of an alumina-forming duplex steel in static liquid lead-bismuth eutectic at 550oC [J]. Corros. Sci., 2021, 189: 109591
doi: 10.1016/j.corsci.2021.109591
|
33 |
Wang J, Lu S P, Rong L J, et al. Effect of silicon on the oxidation resistance of 9 wt.% Cr heat resistance steels in 550oC lead-bismuth eutectic [J]. Corros. Sci., 2016, 111: 13
doi: 10.1016/j.corsci.2016.04.020
|
34 |
Shi H, Wang H, Fetzer R, et al. Influence of Si addition on the corrosion behavior of 9 wt% Cr ferritic/ martensitic steels exposed to oxygen-controlled molten Pb-Bi eutectic at 550 and 600oC [J]. Corros. Sci., 2021, 193: 109871
doi: 10.1016/j.corsci.2021.109871
|
35 |
Ejenstam J, Szakálos P. Long term corrosion resistance of alumina forming austenitic stainless steels in liquid lead [J]. J. Nucl. Mater., 2015, 461: 164
doi: 10.1016/j.jnucmat.2015.03.011
|
36 |
Chen S H, Rong L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel [J]. J. Nucl. Mater., 2015, 459: 13
doi: 10.1016/j.jnucmat.2015.01.004
|
37 |
Van Den Bosch J, Coen G, Hosemann P, et al. On the LME susceptibility of Si enriched steels [J]. J. Nucl. Mater., 2012, 429: 105
doi: 10.1016/j.jnucmat.2012.05.017
|
38 |
Gong X, Sun L, Zhang F F, et al. Effect of alloying elements on liquid metal embrittlement of pure BCC Fe in contact with liquid lead-bismuth eutectic: Experiments and first principles calculation [J]. Corros. Sci., 2022, 208: 110522
doi: 10.1016/j.corsci.2022.110522
|
39 |
Tan J B, Zhang Q, Wang X, et al. Slow tension and creep test device in high temperature liquid lead-bismuth environment [P]. Chin Pat, 202120775739.5, 2021
|
|
谭季波, 张 强, 王 翔 等. 高温液态铅铋环境中的慢拉伸及蠕变试验装置 [P]. 中国专利, 202120775739.5, 2021)
|
40 |
Tan J B, Zhang Q, Wang X, et al. A fatigue test device in high temperature liquid lead-bismuth environment [P]. Chin Pat, 2021207-75649.6, 2021
|
|
谭季波, 张 强, 王 翔 等. 一种高温液态铅铋环境中的疲劳试验装置 [P]. 中国专利, 202120775649.6, 2021)
|
41 |
Pan X, Zhang Y P, Dong Z H, et al. Effect of pre-oxidation treatment on the corrosion resistance in stagnant liquid Pb-Bi eutectic of 12Cr ferritic/martensitic steel [J]. Acta Metall. Sin., doi: 10.11900/0412.1961.2022.00267
|
|
潘 霞, 张洋鹏, 董志宏 等. 预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响 [J]. 金属学报, doi: 10.11900/0412.1961.2022.00267
|
42 |
Roy A, Kumar P, Maitra D. The effect of silicon content on impact toughness of t91 grade steels [J]. J. Mater. Eng. Perform., 2009, 18: 205
doi: 10.1007/s11665-008-9271-z
|
43 |
Cabet C, Dalle F, Gaganidze E, et al. Ferritic-martensitic steels for fission and fusion applications [J]. J. Nucl. Mater., 2019, 523: 510
doi: 10.1016/j.jnucmat.2019.05.058
|
44 |
Chen S H, Xie A, Lv X L, et al. Tailoring microstructure of austenitic stainless steel with improved performance for generation-IV fast reactor application: A review [J]. Crystals, 2023, 13: 268
doi: 10.3390/cryst13020268
|
45 |
Wang Q Y, Chen S H, Rong L J. δ-Ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting [J]. Metall. Mater. Trans., 2020, 51A: 2998
|
46 |
Wang Q Y, Chen S H, Lv X L, et al. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114: 7
doi: 10.1016/j.jmst.2021.10.008
|
47 |
Padilha A F, Rios P R. Decomposition of austenite in austenitic stainless steels [J]. ISIJ Int., 2002, 42: 325
doi: 10.2355/isijinternational.42.325
|
48 |
Etienne A, Radiguet B, Pareige P. Understanding silicon-rich phase precipitation under irradiation in austenitic stainless steels [J]. J. Nucl. Mater., 2010, 406: 251
doi: 10.1016/j.jnucmat.2010.08.045
|
49 |
Xie A, Chen S H, Wu Y, et al. Homogenization temperature dependent microstructural evolution and mechanical properties in a Nb-stabilized cast austenitic stainless steel [J]. Mater. Charact., 2022, 194: 112384
doi: 10.1016/j.matchar.2022.112384
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|