Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (4): 502-512    DOI: 10.11900/0412.1961.2022.00531
Overview Current Issue | Archive | Adv Search |
Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels
WU Xinqiang, RONG Lijian(), TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu
CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels. Acta Metall Sin, 2023, 59(4): 502-512.

Download:  HTML  PDF(4501KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Structural materials are one of the major factors that restrict the lead-cooled fast reactor construction due to metallic elements that can dissolve in the liquid lead-bismuth eutectic (LBE), which may affect the structure's safety. T91 steel and 316 stainless steel are the leading structural materials for critical equipment such as fuel cladding, reactor vessels, and reactor core internals. The environmental compatibility of those steels with the liquid LBE needs to be systematically evaluated. However, T91 steel and 316 stainless steel suffer from rapid oxidation corrosion in oxygen-saturated LBE at 550oC. T91 steel's corrosion resistance in liquid LBE can be improved by decreasing the oxygen concentration (1.26 × 10-6%, mass fraction), but dissolved corrosion occurred at dissolved oxygen concentration below 1 × 10-6% for T91 steel and 316 stainless steel. T91 steel is sensitive to liquid metal embrittlement, significantly reducing its corrosion fatigue life in the liquid LBE. Compared to the standard (9%-12%)Cr ferritic/martensitic steel and 316 stainless steel, the microalloyed Si enhanced (9%-12%)Cr ferritic/martensitic steel (9Cr-Si and 12Cr-Si) and 316 stainless steel (ASS-Si) have good microstructural stability and comprehensive mechanical properties. The Si-rich oxide formation in liquid LBE improves the oxide film compactness and corrosion resistance. The dissolution corrosion was inhibited in static oxygen-saturation and oxygen-controlled (10-6%-10-7%) flowing liquid LBE (0.3 m/s) at 550oC for 9Cr-Si, 12Cr-Si, and ASS-Si. These alloys are expected to meet the design requirements for a lead-cooled fast reactor.

Key words:  ferritic/martensitic steel      austenitic stainless steel      liquid metal corrosion      liquid metal embrittlement      mechanical property      microstructure stability     
Received:  20 October 2022     
ZTFLH:  TL341  
Fund: National Natural Science Foundation of China(52271077);National Natural Science Foundation of China(51871218);LingChuang Research Project of China National Nuclear Corporation, and Youth Innovation Promotion Association CAS(2021189)
Corresponding Authors:  RONG Lijian, professor, Tel: (024)23971979, E-mail: ljrong@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00531     OR     https://www.ams.org.cn/EN/Y2023/V59/I4/502

Fig.1  Photos of corrosion damage test apparatuses in liquid lead-bismuth eutectic (LBE)
(a) immersion test apparatus (b) Pt/air sensor
(c) slow strain rate/creep test apparatus (d) fatigue test apparatus
Fig.2  Cross-section morphologies of oxide films on T91 steel after 1000 h exposure in liquid LBE at 550oC and different mass fractions of dissolved oxygen (DO)[4] (OOL—outer oxide layer, IOL—inner oxide layer, IOZ—inner oxide zone, OL—oxide layer)
(a) saturated oxygen (b) 1.26 × 10-6% DO (c) 1.41 × 10-8% DO (d) 1.12 × 10-9% DO
Fig.3  Cross-sectional morphologies of oxide films on 316 stainless steel after 1000 h exposure in liquid LBE at 550oC
(a) saturated oxygen (b) 1 × 10-7% DO
Fig.4  Comparisons between fatigue life in air and liquid LBE (ASME—America Society of Mechanical Engineers)
(a) T91 steel (b) 316 stainless steel
Fig.5  Morphologies of fatigue crack propagation region in liquid LBE
(a) T91 steel, 350oC, strain amplitude 0.6%
(b) 316 stainless steel, 400oC, strain amplitude 0.8%
Fig.6  Cross-sectional back scattered electron (BSE) image (a) and corresponding line scanning (b) of 9Cr-Si alloy after exposure for 1000 h to stagn-ant oxygen-saturated LBE at 550oC
Fig.7  LBE corrosion test results of 12Cr-Si ferritic/martensitic steels
(a) corrosion layer thickness changes with time in stagnant oxygen-saturated LBE at 550oC (b, c) cross-sectional morphologies of HT9 steel (b) and 12Cr-Si steel (c) after exposure for 10000 h to stagnant oxygen-saturated LBE at 550oC (d, e) cross-sectional morphologies and corresponding EDS element mappings of HT9 steel (d) and 12Cr-Si steel (e) after exposure to flowing and oxygen controlled LBE for 1500 h (0.3 m/s, 10-6%-10-7%)
Fig.8  SEM images of microstructures of as cast 9Cr-Si (a) and as-homogenized 9Cr-Si (b)
Fig.9  SEM image of tempered 9Cr-Si ferritic/martensitic steel
Fig.10  Strength curves at room temperature and high temperature (a) and ductile-to-brittle transition temperature (DBTT) curves (b) of 9Cr-Si and T91 steels
Fig.11  DBTT curves of tempered and aged 9Cr-Si steel at 550oC (a), TEM image after 3000 h aging (b), and the elements mappings of the area denoted by the rectangle in Fig.11b (c)
Fig.12  Creep-rupture strength of 12Cr-Si and HT9 steels at 650oC
Fig.13  Thicknesses of oxide scale of ASS-Si and 316 austenitic steels after exposure up to 5000 h to stagnant oxygen-saturated LBE at 550oC
Fig.14  Cross-sectional BSE image (a) and corresponding EDS analyses (b,c) of ASS-Si austenitic steel after exposure for 1000 h to stagnant oxygen-saturated LBE at 550oC
Fig.15  Cross-sectional SEM images of 316 (a,b) and ASS-Si (c,d) austenitic steels after exposure for 1500 h to flowing oxygen-controlled LBE at 550oC (Figs.12b and d are enlarged views of the areas in Figs.11a and c, respectively)
Fig.16  TEM image and the corresponding element mappings of Cr, Ni, Si, and Fe near grain boundaries of Si-modified austenitic steel after aging at 550oC for 1000 h
SteelYield strengthTensile strength3000 h creep-rupture strength

Type 304

ASS-Si

106

201

349

433

210

220

Table 1  Tensile and creep-rupture strength of Type 304 aus-tenitic steel and ASS-Si austenitic steel at 550oC
1 Was G S. Challenges to the use of ion irradiation for emulating reactor irradiation [J]. J. Mater. Res., 2015, 30: 1158
doi: 10.1557/jmr.2015.73
2 OECD, Nuclear Energy Agency. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies [R]. OECD/NEA No. 6195, 2015
3 Gong X, Short M P, Auger T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors [J]. Prog. Mater. Sci., 2022, 126: 100920
doi: 10.1016/j.pmatsci.2022.100920
4 Zhu Z G, Zhang Q, Tan J B, et al. Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550oC: Effects of exposure time and dissolved oxygen concentration [J]. Corros. Sci., 2022, 204: 110405
doi: 10.1016/j.corsci.2022.110405
5 Yeliseyeva O, Tsisar V, Benamati G. Influence of temperature on the interaction mode of T91 and AISI 316L steels with Pb-Bi melt saturated by oxygen [J]. Corros. Sci., 2008, 50: 1672
doi: 10.1016/j.corsci.2008.02.006
6 Martinelli L, Dufrenoy T, Jaakou K, et al. High temperature oxidation of Fe-9Cr-1Mo steel in stagnant liquid lead-bismuth at several temperatures and for different lead contents in the liquid alloy [J]. J. Nucl. Mater., 2008, 376: 282
doi: 10.1016/j.jnucmat.2008.02.006
7 Sapundjiev D, Van Dyck S, Bogaerts W. Liquid metal corrosion of T91 and A316L materials in Pb-Bi eutectic at temperatures 400-600oC [J]. Corros. Sci., 2006, 48: 577
doi: 10.1016/j.corsci.2005.04.001
8 Klok O, Lambrinou K, Gavrilov S, et al. Effect of deformation twinning on dissolution corrosion of 316L stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500oC [J]. J. Nucl. Mater., 2018, 510: 556
doi: 10.1016/j.jnucmat.2018.08.030
9 Kurata Y, Futakawa M, Saito S. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550oC [J]. J. Nucl. Mater., 2005, 343: 333
doi: 10.1016/j.jnucmat.2004.07.064
10 Tsisar V, Schroer C, Wedemeyer O, et al. Effect of structural state and surface finishing on corrosion behavior of 1.4970 austenitic steel at 400 and 500oC in flowing Pb-Bi eutectic with dissolved oxygen [J]. J. Nucl. Eng. Rad. Sci., 2018, 4: 041001
11 Schroer C, Wedemeyer O, Skrypnik A, et al. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead-bismuth eutectic at 450oC [J]. J. Nucl. Mater., 2012, 431: 105
doi: 10.1016/j.jnucmat.2011.11.014
12 Tian S J. Growth and exfoliation behavior of the oxide scale on 316L and T91 in flowing liquid lead-bismuth eutectic at 480oC [J]. Oxid. Met., 2020, 93: 183
doi: 10.1007/s11085-019-09953-7
13 Kolman D G. A review of recent advances in the understanding of liquid metal embrittlement [J]. Corrosion, 2019, 75: 42
doi: 10.5006/2904
14 Gong X, Stergar E, Marmy P, et al. Tensile fracture behavior of notched 9Cr-1Mo ferritic-martensitic steel specimens in contact with liquid lead-bismuth eutectic at 350oC [J]. Mater. Sci. Eng., 2017, A692: 139
15 Wang H, Gong X, Xiao J, et al. Liquid metal embrittlement of 12Cr ferritic/martensitic steel thin-walled tubes exposed to liquid lead-bismuth eutectic [J]. Corros. Sci., 2022, 195: 110024
doi: 10.1016/j.corsci.2021.110024
16 Xue B Q, Tan J B, Zhang Z Y, et al. Effect of temperature on low cycle fatigue behavior of T91 steel in liquid lead-bismuth eutectic environment at 150-550oC [J]. Int. J. Fatigue, 2023, 167: 107344
doi: 10.1016/j.ijfatigue.2022.107344
17 Gong X, Marmy P, Verlinden B, et al. Low cycle fatigue behavior of a modified 9Cr-1Mo ferritic-martensitic steel in lead-bismuth eutectic at 350oC—Effects of oxygen concentration in the liquid metal and strain rate [J]. Corros. Sci., 2015, 94: 377
doi: 10.1016/j.corsci.2015.02.022
18 Vogt J B, Bouquerel J, Carle C, et al. Stability of fatigue cracks at 350 oC in air and in liquid metal in T91 martensitic steel [J]. Int. J. Fatigue, 2020, 130: 105265
doi: 10.1016/j.ijfatigue.2019.105265
19 Gong X, Marmy P, Qin L, et al. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450oC [J]. J. Nucl. Mater., 2016, 468: 289
doi: 10.1016/j.jnucmat.2015.06.021
20 Van Den Bosch J, Coen G, Almazouzi A, et al. Fracture toughness assessment of ferritic-martensitic steel in liquid lead-bismuth eutectic [J]. J. Nucl. Mater., 2009, 385: 250
doi: 10.1016/j.jnucmat.2008.11.024
21 Auger T, Gorse D, Hamouche-Hadjem Z, et al. Fracture mechanics behavior of the T91 martensitic steel in contact with liquid lead-bismuth eutectic for application in an accelerator driven system [J]. J. Nucl. Mater., 2011, 415: 293
doi: 10.1016/j.jnucmat.2011.04.021
22 Weisenburger A, Jianu A, An W, et al. Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550oC [J]. J. Nucl. Mater., 2012, 431: 77
doi: 10.1016/j.jnucmat.2011.11.027
23 Yurechko M, Schroer C, Skrypnik A, et al Creep-to-rupture of the steel P 92 at 650oC in oxygen-controlled stagnant lead in comparison to air [J]. J. Nucl. Mater., 2013, 432: 78
doi: 10.1016/j.jnucmat.2012.07.029
24 Yurechko M, Schroer C, Skrypnik A, et al. Creep-to-rupture of 12Cr- and 14Cr-ODS steels in oxygen-controlled lead and air at 650oC [J]. J. Nucl. Mater., 2014, 450: 88
doi: 10.1016/j.jnucmat.2013.09.063
25 Yurechko M, Schroer C, Wedemeyer O, et al. Creep-rupture tests on chromium-containing conventional and ODS steels in oxygen-controlled Pb and air at 650 oC[J]. Nucl. Eng. Des., 2014, 280: 686
doi: 10.1016/j.nucengdes.2014.06.003
26 Schroer C, Koch V, Wedemeyer O, et al. Silicon-containing ferritic/martensitic steel after exposure to oxygen-containing flowing lead-bismuth eutectic at 450 and 550oC [J]. J. Nucl. Mater., 2016, 469: 162
doi: 10.1016/j.jnucmat.2015.11.058
27 Shi H, Jianu A, Fetzer R, et al. Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead [J]. Corros. Sci., 2021, 189: 109593
doi: 10.1016/j.corsci.2021.109593
28 Li N, Parker S S, Saleh T A, et al. Intermediate temperature corrosion behaviour of Fe-12Cr-6Al-2Mo-0.2Si-0.03Y alloy (C26M) at 300-600oC [J]. Corros. Sci., 2019, 157: 274
doi: 10.1016/j.corsci.2019.05.029
29 Popovic M P, Chen K, Shen H, et al. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic [J]. Acta Mater., 2018, 151: 301
doi: 10.1016/j.actamat.2018.03.041
30 Kurata Y. Corrosion behavior of Si-enriched steels for nuclear applications in liquid lead-bismuth [J]. J. Nucl. Mater., 2013, 437: 401
doi: 10.1016/j.jnucmat.2013.02.022
31 Short M P, Ballinger R G, Hänninen H E. Corrosion resistance of alloys F91 and Fe-12Cr-2Si in lead-bismuth eutectic up to 715oC [J]. J. Nucl. Mater., 2013, 434: 259
doi: 10.1016/j.jnucmat.2012.11.010
32 Chen L Z, Tsisar V, Wang M, et al. Effect of oxygen on corrosion of an alumina-forming duplex steel in static liquid lead-bismuth eutectic at 550oC [J]. Corros. Sci., 2021, 189: 109591
doi: 10.1016/j.corsci.2021.109591
33 Wang J, Lu S P, Rong L J, et al. Effect of silicon on the oxidation resistance of 9 wt.% Cr heat resistance steels in 550oC lead-bismuth eutectic [J]. Corros. Sci., 2016, 111: 13
doi: 10.1016/j.corsci.2016.04.020
34 Shi H, Wang H, Fetzer R, et al. Influence of Si addition on the corrosion behavior of 9 wt% Cr ferritic/ martensitic steels exposed to oxygen-controlled molten Pb-Bi eutectic at 550 and 600oC [J]. Corros. Sci., 2021, 193: 109871
doi: 10.1016/j.corsci.2021.109871
35 Ejenstam J, Szakálos P. Long term corrosion resistance of alumina forming austenitic stainless steels in liquid lead [J]. J. Nucl. Mater., 2015, 461: 164
doi: 10.1016/j.jnucmat.2015.03.011
36 Chen S H, Rong L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel [J]. J. Nucl. Mater., 2015, 459: 13
doi: 10.1016/j.jnucmat.2015.01.004
37 Van Den Bosch J, Coen G, Hosemann P, et al. On the LME susceptibility of Si enriched steels [J]. J. Nucl. Mater., 2012, 429: 105
doi: 10.1016/j.jnucmat.2012.05.017
38 Gong X, Sun L, Zhang F F, et al. Effect of alloying elements on liquid metal embrittlement of pure BCC Fe in contact with liquid lead-bismuth eutectic: Experiments and first principles calculation [J]. Corros. Sci., 2022, 208: 110522
doi: 10.1016/j.corsci.2022.110522
39 Tan J B, Zhang Q, Wang X, et al. Slow tension and creep test device in high temperature liquid lead-bismuth environment [P]. Chin Pat, 202120775739.5, 2021
谭季波, 张 强, 王 翔 等. 高温液态铅铋环境中的慢拉伸及蠕变试验装置 [P]. 中国专利, 202120775739.5, 2021)
40 Tan J B, Zhang Q, Wang X, et al. A fatigue test device in high temperature liquid lead-bismuth environment [P]. Chin Pat, 2021207-75649.6, 2021
谭季波, 张 强, 王 翔 等. 一种高温液态铅铋环境中的疲劳试验装置 [P]. 中国专利, 202120775649.6, 2021)
41 Pan X, Zhang Y P, Dong Z H, et al. Effect of pre-oxidation treatment on the corrosion resistance in stagnant liquid Pb-Bi eutectic of 12Cr ferritic/martensitic steel [J]. Acta Metall. Sin., doi: 10.11900/0412.1961.2022.00267
潘 霞, 张洋鹏, 董志宏 等. 预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响 [J]. 金属学报, doi: 10.11900/0412.1961.2022.00267
42 Roy A, Kumar P, Maitra D. The effect of silicon content on impact toughness of t91 grade steels [J]. J. Mater. Eng. Perform., 2009, 18: 205
doi: 10.1007/s11665-008-9271-z
43 Cabet C, Dalle F, Gaganidze E, et al. Ferritic-martensitic steels for fission and fusion applications [J]. J. Nucl. Mater., 2019, 523: 510
doi: 10.1016/j.jnucmat.2019.05.058
44 Chen S H, Xie A, Lv X L, et al. Tailoring microstructure of austenitic stainless steel with improved performance for generation-IV fast reactor application: A review [J]. Crystals, 2023, 13: 268
doi: 10.3390/cryst13020268
45 Wang Q Y, Chen S H, Rong L J. δ-Ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting [J]. Metall. Mater. Trans., 2020, 51A: 2998
46 Wang Q Y, Chen S H, Lv X L, et al. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114: 7
doi: 10.1016/j.jmst.2021.10.008
47 Padilha A F, Rios P R. Decomposition of austenite in austenitic stainless steels [J]. ISIJ Int., 2002, 42: 325
doi: 10.2355/isijinternational.42.325
48 Etienne A, Radiguet B, Pareige P. Understanding silicon-rich phase precipitation under irradiation in austenitic stainless steels [J]. J. Nucl. Mater., 2010, 406: 251
doi: 10.1016/j.jnucmat.2010.08.045
49 Xie A, Chen S H, Wu Y, et al. Homogenization temperature dependent microstructural evolution and mechanical properties in a Nb-stabilized cast austenitic stainless steel [J]. Mater. Charact., 2022, 194: 112384
doi: 10.1016/j.matchar.2022.112384
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[14] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[15] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
No Suggested Reading articles found!