Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (8): 1015-1026    DOI: 10.11900/0412.1961.2023.00108
Overview Current Issue | Archive | Adv Search |
Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function
CHEN Liqing1(), LI Xing2, ZHAO Yang3, WANG Shuai1, FENG Yang1
1State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2Hefei Innovation Research Institute, Beihang University, Hefei 230012, China
3School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function. Acta Metall Sin, 2023, 59(8): 1015-1026.

Download:  HTML  PDF(2659KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Vibration and noise are considered as public hazards that can affect the daily life of people. The use of additional sound insulation devices or curing of components by design can reduce certain vibration and noise; however, these methods are greatly limited by weight, cost, and vibration-damping effect. Damping materials primarily convert vibration energy into other forms of energy through internal friction to reduce vibration and noise, which is the most direct and effective way to reduce vibration and noise from the material itself. As a new structurally and functionally integrated ferrous material, low-stacking-fault-energy and high-manganese transformation-induced plasticity steel has outstanding damping characteristics based on a large number of ε-martensite and stacking faults as damping sources. It also has unique comprehensive advantages in mechanical properties, cost, and scope of application, indicating its broad application potential. Based on previous research results, this paper primarily summarizes the research and development of high-manganese damping steel at home and abroad. First, the microstructural features of high-manganese damping steel are introduced, and the complex thermal/deformation-induced transformation behavior among austenite, ε-martensite, and α'-martensite is investigated. Second, the mechanical behavior, work-hardening mechanism, damping performance, and the mechanism of high-manganese damping steel are summarized and analyzed. The influence of several strengthening effects on mechanical properties is compared, and the key factors affecting the damping properties of high-manganese damping steel are clarified. Finally, the problems in the research and development of high-manganese damping steel are highlighted, and future research is prospected.

Key words:  high-manganese damping steel      microstructure      work-hardening behavior      mechanical property      damping mechanism     
Received:  04 March 2023     
ZTFLH:  TG135.7  
Fund: National Natural Science Foundation of China(52174359)
Corresponding Authors:  CHEN Liqing, professor, Tel:(024)83681819, E-mail: lqchen@mail.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00108     OR     https://www.ams.org.cn/EN/Y2023/V59/I8/1015

Fig.1  Phase diagram of Fe-Mn binary alloy
Fig.2  ε-martensitic transformation mechanism in Fe-17Mn-0.3Si damping steel after 24% warm deformation[14]
(a) Schmid factor map of austenite (G1—original autenite grain 1, G2—original autenite grain 2)
(b) local disorientation map of austenite
(c) austenitic φ2 = 45° orientation distribution function (ODF) section for circular region in G1 (φ1, φ2, ϕ—Euler angles)
(d) schematic of intersection of (111) γ plane and (001) γ plane (yellow line)
(e) intersections of {111} γ planes and (001) γ plane (The solid lines P1/149° and P3/31° represent the intersection lines that {111} γ planes have a large Schmid factor, the angles between the two lines and rolling direction are 149° and 31°, respectively. The dashed lines P2/59° and P4/121° represent the intersection lines that {111} γ planes have a small Schmid factor, the angles between the two lines and tensile deformation direction are 59° and 121°, respectively)
Fig.3  TEM images showing εα' transformation in Fe-17Mn damping steel after 5% (a) and 15% (b) tensile deformations[19]
Fig.4  Deformation-induced εγ transformation in Fe-15Mn and Fe-17Mn damping steels[19]
(a) austenitic orientation imaging map (OIM) in 5% deformed Fe-15Mn damping steel (Inset shows the standard inverse pole figure of austenite)
(b) EBSD phase map in 5% deformed Fe-15Mn damping steel (Red region denotes austenite, yellow region denotes ε-martensite, green region denotes α'-martensite. TD—transverse direction, RD—rolling direction)
(c) TEM image of 5% deformed Fe-17Mn damping steel (Inset shows the SAED pattern of γ phase)
Fig.5  TEM image showing thermally induced γα' transformation in Fe-15Mn damping steel (SF—stacking fault)[19]
Fig.6  Engineering stress-strain curves (a) and impact energies (b) of Fe-15Mn, Fe-17Mn, Fe-19Mn, and Fe-17Mn-0.3Si damping steels
Fig.7  Engineering stress-strain (θ-σ) (a) and lnθ-lnσ (b) curves of Fe-17Mn-0.3Si damping steel at different temperatures[31] (Lines in Fig.7b are the fitting lines of lnθ-lnσ)
DeformationStage-IStage-II
temperature / oC
80γεεα', DSA (type-A/B)
120γεεα', DSA (type-A/B)
160DS, DSAεα', DSA (type-B)
(type-B)
200DS, εγεγ, εα', DS,
DSA (type-C)
260DSTwinning, DS
Table 1  Main factors affecting work hardening behavior of Fe-17Mn-0.3Si damping steel at different temperatures[31]
Fig.8  Strain amplitude-δ curves of Fe-15Mn, Fe-17Mn, and Fe-19Mn damping steels (δ—logarithmic decrement)
Fig.9  Strain amplitude-δ curves of Fe-19Mn damping steel after 0, 5%, and 15% tensile deformations
Fig.10  Schematic of the controlled aging process (a) and strain amplitude-δ curves (b) of Fe-19Mn damping steel before and after controlled aging[47] (Msε-martensite transformation start temperature )
Fig.11  Schematics of movement of partial dislocations in Fe-Mn damping alloy during vibration
(a) before vibration
(b) bowing out (LC—distance between weak pinning points, LN—distance between strong pinning points)
(c) unpinning
Fig.12  Sketch maps showing the nucleation and growth of ε-martensite in high-Mn damping steel[47] and the TEM image of interial cell structure
(a) partial dislocation (b) stacking fault (r—width of stacking fault)
(c) embryo of ε-martensite (l—length of embryo, t—thickness of embryo)
(d) stacking of embryos (W—width of embryo, N—number of embryo)
(e) ε-martensite (f) TEM image of ε-martensite
1 Lee Y K, Baik S H, Kim J C, et al. Effects of amount of ε martensite, carbon content and cold working on damping capacity of an Fe-17% Mn martensitic alloy [J]. J. Alloys Compd., 2003, 355: 10
doi: 10.1016/S0925-8388(03)00244-5
2 Wu Z S, Wang J F, Wang H B, et al. Enhanced damping capacities of Mg-Ce alloy by the special microstructure with parallel second phase [J]. J. Mater. Sci. Technol., 2017, 33: 941
doi: 10.1016/j.jmst.2016.06.027
3 Fukuhara M, Yin F X, Ohsawa Y, et al. High-damping properties of Mn-Cu sintered alloys [J]. Mater. Sci. Eng., 2006, A442: 439
4 Birchon D, Bromley D E, Healey D. Mechanism of energy dissipation in high-damping-capacity manganese-copper alloys [J]. Met. Sci. J., 1968, 2: 41
doi: 10.1016/0036-9748(68)90165-8
5 Souza Filho I R, Sandim M J R, Cohen R, et al. Magnetic properties of a 17.6 Mn-TRIP steel: Study of strain-induced martensite formation, austenite reversion, and athermal α'-formation [J]. J. Magn. Magn. Mater., 2019, 473: 109
doi: 10.1016/j.jmmm.2018.10.034
6 Seol J B, Jung J E, Jang Y W, et al. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ε-martensite dual-phase Fe-Mn-C steels [J]. Acta Mater., 2013, 61: 558
doi: 10.1016/j.actamat.2012.09.078
7 Lü Y P, Hutchinson B, Molodov D A, et al. Effect of deformation and annealing on the formation and reversion of ε-martensite in an Fe-Mn-C alloy [J]. Acta Mater., 2010, 58: 3079
doi: 10.1016/j.actamat.2010.01.045
8 Xu Z Y. Martensitic transformation fcc (γ)→hcp (ε) [J]. Sci. China Ser., 1997, 27E: 289
徐祖耀. fcc(γ)→hcp(ε)马氏体相变 [J]. 中国科学, 1997, 27E: 289
9 Yang H S, Jang J H, Bhadeshia H K D H, et al. Critical assessment: Martensite-start temperature for the γε transformation [J]. Calphad, 2012, 36: 16
doi: 10.1016/j.calphad.2011.10.008
10 Takaki S, Nakatsu H, Tokunaga Y. Effects of austenite grain size on ε martensitic transformation in Fe-15mass%Mn alloy [J]. Mater. Trans. JIM, 1993, 34: 489
11 Jiang B H, Qi X, Yang S X, et al. Effect of stacking fault probability on γ-ε martensitic transformation and shape memory effect in Fe-Mn-Si based alloys [J]. Acta Mater., 1998, 46: 501
doi: 10.1016/S1359-6454(97)00266-8
12 Wang H Z, Yang P, Mao W M, et al. Effect of hot deformation of austenite on martensitic transformation in high manganese steel [J]. J. Alloys Compd., 2013, 558: 26
doi: 10.1016/j.jallcom.2012.12.032
13 Liu T Y, Yang P, Meng L, et al. Influence of austenitic orientation on martensitic transformations in a compressed high manganese steel [J]. J. Alloys Compd., 2011, 509: 8337
doi: 10.1016/j.jallcom.2011.05.015
14 Li X, Zhao Y, Chen L Q. Prior warm deformation dependence on microstructural evolution and tensile properties of a high-Mn steel [J]. JOM, 2019, 71: 1303
doi: 10.1007/s11837-018-3281-6
15 Chen J, Zhang W N, Liu Z Y, et al. Microstructural evolution and deformation mechanism of a Fe-15Mn alloy investigated by electron back-scattered diffraction and transmission electron microscopy [J]. Mater. Sci. Eng., 2017, A698: 198
16 Kinney C C, Yi I, Pytlewski K R, et al. The microstructure of as-quenched 12Mn steel [J]. Acta Mater., 2017, 125: 442
doi: 10.1016/j.actamat.2016.12.001
17 Kim J S, Jeon J B, Jung J E, et al. Effect of deformation induced transformation of ɛ-martensite on ductility enhancement in a Fe-12Mn steel at cryogenic temperatures [J]. Met. Mater. Int., 2014, 20: 41
doi: 10.1007/s12540-014-1010-4
18 Kim J S, Shin S Y, Jung J E, et al. Effects of tempering temperature on microstructure and tensile properties of Fe-12Mn steel [J]. Mater. Sci. Eng., 2015, A640: 171
19 Li X, Chen L Q, Zhao Y, et al. Influence of manganese content on ε-/α'-martensitic transformation and tensile properties of low-C high-Mn TRIP steels [J]. Mater. Des., 2018, 142: 190
doi: 10.1016/j.matdes.2018.01.026
20 Zhang W N, Liu Z T, Zhang Z B, et al. The crystallographic mechanism for deformation induced martensitic transformation observed by high resolution transmission electron microscope [J]. Mater. Lett., 2013, 91: 158
doi: 10.1016/j.matlet.2012.09.086
21 Kwon K H, Suh B C, Baik S I, et al. Deformation behavior of duplex austenite and ε-martensite high-Mn steel [J]. Sci. Technol. Adv. Mater., 2013, 14: 014204
22 Kwon K H, Jeong J S, Choi J K, et al. In-situ neutron diffraction analysis on deformation behavior of duplex high Mn steel containing austenite and ɛ-martensite [J]. Met. Mater. Int., 2012, 18: 751
doi: 10.1007/s12540-012-5003-x
23 Seol J B, Kim J G, Na S H, et al. Deformation rate controls atomic-scale dynamic strain aging and phase transformation in high Mn TRIP steels [J]. Acta Mater., 2017, 131: 187
doi: 10.1016/j.actamat.2017.03.076
24 Tomota Y, Strum M, Morris J W. The relationship between toughness and microstructure in Fe-high Mn binary alloys [J]. Metall. Trans., 1987, 18A: 1073
25 Tomota Y, Strum M, Morris J W. Microstructural dependence of Fe-high Mn tensile behavior [J]. Metall. Trans., 1986, 17A: 537
26 Wang Y, Hu B, Liu X Y, et al. Influence of annealing temperature on both mechanical and damping properties of Nb-alloyed high Mn steel [J]. Acta Metall. Sin., 2022, 57: 1588
王 玉, 胡 斌, 刘星毅 等. 退火温度对含Nb高锰钢力学和阻尼性能的影响 [J]. 金属学报, 2022, 57: 1588
27 Koyama M, Sawaguchi T, Tsuzaki K. Effect of deformation temperature on tensile properties in a pre-cooled Fe-Mn-C austenitic steel [J]. Mater. Sci. Eng., 2012, A556: 331
28 Koyama M, Sawaguchi T, Tsuzaki K. Premature fracture mechanism in an Fe-Mn-C austenitic steel [J]. Metall. Mater. Trans., 2012, 43A: 4063
29 Li X, Chen L Q, Zhao Y, et al. Influence of original austenite grain size on tensile properties of a high-manganese transformation-induced plasticity (TRIP) steel [J]. Mater. Sci. Eng., 2018, A715: 257
30 Koyama M, Sawaguchi T, Lee T, et al. Work hardening associated with ɛ-martensitic transformation, deformation twinning and dyna-mic strain aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP steels [J]. Mater. Sci. Eng., 2011, A528: 7310
31 Li X, Wei L L, Chen L Q, et al. Work hardening behavior and tensile properties of a high-Mn damping steel at elevated temperatures [J]. Mater. Charact., 2018, 144: 575
doi: 10.1016/j.matchar.2018.07.036
32 Jiang H F, Zhang Q C, Chen X D, et al. Three types of Portevin-Le Châtelier effects: Experiment and modelling [J]. Acta Mater., 2007, 55: 2219
doi: 10.1016/j.actamat.2006.10.029
33 Huang S K, Li N, Wen Y H, et al. Effect of Si and Cr on stacking fault probability and damping capacity of Fe-Mn alloy [J]. Mater. Sci. Eng., 2008, A479: 223
34 Wu B, Qian B, Wen Y. Effects of Cr on stacking-fault energy and damping capacity of FeMn [J]. Mater. Sci. Technol., 2017, 33: 1019
doi: 10.1080/02670836.2016.1262318
35 Jun J H, Kong D K, Choi C S. The influence of Co on damping capacity of Fe-Mn-Co alloys [J]. Mater. Res. Bull., 1998, 33: 1419
doi: 10.1016/S0025-5408(98)00145-7
36 Choi W S, De Cooman B C. Effect of carbon on the damping capacity and mechanical properties of thermally trained Fe-Mn based high damping alloys [J]. Mater. Sci. Eng., 2017, A700: 641
37 Kim J C, Han D W, Baik S H, et al. Effects of alloying elements on martensitic transformation behavior and damping capacity in Fe-17Mn alloy [J]. Mater. Sci. Eng., 2004, A378: 323
38 Sawaguchi T, Kikuchi T, Yin F X, et al. Internal friction of an Fe-28Mn-6Si-5Cr-0.5NbC shape memory alloy [J]. Mater. Sci. Eng., 2006, A438-440: 796
39 Sawaguchi T, Bujoreanu L G, Kikuchi T, et al. Effects of Nb and C in solution and in NbC form on the transformation-related internal friction of Fe-17Mn (mass%) alloys [J]. ISIJ Int., 2008, 48: 99
doi: 10.2355/isijinternational.48.99
40 Ding S, Li N, Xu Y G, et al. Effects of rare-earth on damping capacity of Fe-17.5Mn alloy [J]. J. Mater. Eng., 2006, (9): 17
丁 胜, 李 宁, 胥永刚 等. 稀土对Fe-17.5Mn合金阻尼性能的影响 [J]. 材料工程, 2006, (9): 17
41 Huang S K, Li N, Wen Y H, et al. Effects of deep-cooling and temperature on damping capacity of Fe-Mn alloy [J]. Acta Metall. Sin., 2007, 43: 807
黄姝珂, 李 宁, 文玉华 等. 深冷处理和温度对Fe-Mn合金阻尼性能的影响 [J]. 金属学报, 2007, 43: 807
42 Li X, Chen L Q, Yuan X Y, et al. Effect of cooling method and aging time on damping capacity of Fe-19%Mn alloy [J]. J. Univ. Sci. Technol. Liaoning, 2016, 39: 430
李 兴, 陈礼清, 袁晓云 等. 冷却方式和时效时间对Fe-19%Mn合金阻尼性能的影响 [J]. 辽宁科技大学学报, 2016, 39: 430
43 Lee Y K, Jun J H, Choi C S. Effect of ε martensite content on the damping capacity of Fe-17%Mn alloy [J]. Scr. Mater., 1996, 35: 825
doi: 10.1016/1359-6462(96)00231-X
44 Watanabe Y, Sato H, Nishino Y, et al. Training effect on damping capacity in Fe-20mass%Mn binary alloy [J]. Mater. Sci. Eng., 2008, A490: 138
45 Jun J H, Baik S H, Lee Y K, et al. The influence of aging on damping capacity of Fe-17%Mn-X%C alloys [J]. Scr. Mater., 1998, 39: 39
doi: 10.1016/S1359-6462(98)00125-0
46 Wen Y H, Xiao H X, Peng H B, et al. Relationship between damping capacity and variations of vacancies concentration and segregation of carbon atom in an Fe-Mn alloy [J]. Metall. Mater. Trans., 2015, 46A: 4828
47 Li X, Chen L Q, Zhao Y. Controlled aging processes to improve damping capacity of Fe-19Mn alloy [J]. Mater. Res. Express, 2019, 6: 066579
48 Huang S K, Zhou D C, Liu J H, et al. Effects of strain amplitude and temperature on the damping capacity of an Fe-19Mn alloy with different microstructures [J]. Mater. Charact., 2010, 61: 1227
doi: 10.1016/j.matchar.2010.08.001
49 Huang S K, Huang W R, Liu J H, et al. Internal friction mechanism of Fe-19Mn alloy at low and high strain amplitude [J]. Mater. Sci. Eng., 2013, A560: 837
50 Granato A, Lücke K. Theory of mechanical damping due to dislocations [J]. J. Appl. Phys., 1956, 27: 583
51 Granato A V, Lücke K. Temperature dependence of amplitude-dependent dislocation damping [J]. J. Appl. Phys., 1981, 52: 7136
doi: 10.1063/1.328687
52 Bardeen J, Herring C. Imperfections in Nearly Perfect Crystals [M]. New York: Wiley, 1952: 197
53 Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Understanding martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects [J]. Acta Mater., 2017, 128: 120
doi: 10.1016/j.actamat.2017.02.004
54 Liu X, Zhao G, Li D H, et al. Research and development of 17 Mn damping steel 4~100 mm plate at Ansteel [J]. Spec. Steel, 2022, 43(4): 55
刘 璇, 赵 刚, 李大航 等. 鞍钢17Mn阻尼钢4~100 mm板的研制 [J]. 特殊钢, 2022, 43(4): 55
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!