Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (5): 477-482     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect of Phosphorus on Mechanical Properties of Fine-Grained GH4133 Nickel Base Superalloy
SUN Wenru; GUO Shouren; MENG Xiaona; LI Na; HU Zhuangqi
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

SUN Wenru; GUO Shouren; MENG Xiaona; LI Na; HU Zhuangqi. Effect of Phosphorus on Mechanical Properties of Fine-Grained GH4133 Nickel Base Superalloy. Acta Metall Sin, 2004, 40(5): 477-482 .

Download:  PDF(11375KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Apposite phosphorus content can improve the mechanical properties of the fine-grained GH4133 nickel-base superalloy. The grain size of the alloy was refined to ASTM 8-10 grade by controlling the thermal processing and the heat treatment. The tensile specimens fail by intergranular fracture even when the phosphorus level is as high as 0.140\% (mass fraction). The yield and ultimate strengths of the refined alloy are 200 and 150 MPa higher than that of the alloy with a standard microstructure of ASTM 4-5 grain size, respectively. And the above two strengths of the alloy with 0.140% phosphorus are 100 and 50 MPa higher than those of the alloy with a industrial controlled phosphorus level, say 0.005%. The impact specimens fail by intragranular fracture when the phosphorus level is below 0.023% and the fracture toughness of the alloy is higher than 70 MJ/m2. Some parts of the fracture surface of the impact specimen with 0.140\% phosphorus exhibited intergranular fracture characteristics and the fracture toughness is lowered to about 40 MJ/m2. Phosphorus extends the rupture life of the GH4133 alloy and its optimum addition is around 0.011%. The interaction between phosphorus atmosphere and dislocations is discussed to understand the effect of phosphorus on different type of mechanical properties.
Key words:  phosphorus      Ni base superalloy      mechanical property      
Received:  19 February 2003     
ZTFLH:  TG113.25  
  TG132.3  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I5/477

[1] Hu Z Q, Sun W R, Guo S R. Acta Metall Sin (Eng Lett), 1996; 9:443
[2] Sun W R, Guo S R, Lu D Z, Hu Z Q. Metall Mater Trans, 1997; 28A: 649
[3] Cao W D, Kennedy R L. In: Loria E A, ed., Superalloys 718, 625 and Various Derivatives, Warrendale, PA: TMS-AIME, 1994:463
[4] Sun W R, Guo S R, Hu Z Q. Mater Sci Eng, 1998; A247: 173
[5] Cao W D, Kennedy R L. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A, eds., Superalloys 1996, Warrendale, PA: TMS- ??AIME, 1996:589
[6] Sun W R, Guo S R, Lu D Z, Li Z C, Tong B Y, Hu Z Q. In: Hanada S, Zhong Z, Nam S W, Wright R N, eds., 4th Pacific Rim Int Conf on Advanced Materials and Processing (PRICM4) , The Japan Institute of Metals, 1996:2719
[7] Song H W. PhD Thesis, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang, 1999(宋洪伟.中国科学院金属研究所博士学位论文,沈阳,1999)
[8] Hu Z Q, Sun W R, Guo S R, Lu D Z. J Iron Steel Res, 2002; (Spec Issue): 337. In: Xin P, Hu L, Ju D Y, eds., The 3rd Int Forum on Advanced Materials Science and Technology, Anshan, Anshan University of Science and Technology, 2002
[9] Editing Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook. Vol.2: Wrought and Cast Superalloys. 2nd ed., Beijing: Standards Press of China, 2002:293(中国航空材料手册编辑委员会.中国航空材料手册(第2卷:变形高温合金铸造高温合金).第2版,北京:中国标准出版社,2002:293).
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!