Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 245-251    DOI: 10.3724/SP.J.1037.2013.00661
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR PROCESSED ULTRAFINE-GRAINED AND NANOSTRUCTURED Cu-Al ALLOYS
XUE Peng, XIAO Bolü, MA Zongyi()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

XUE Peng, XIAO Bolü, MA Zongyi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR PROCESSED ULTRAFINE-GRAINED AND NANOSTRUCTURED Cu-Al ALLOYS. Acta Metall Sin, 2014, 50(2): 245-251.

Download:  HTML  PDF(4287KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ultrafine-grained (UFG) and nanostructured (NS) materials have attracted considerable interest due to their special microstructure and mechanical properties. Severe plastic deformation is one of the optimum approaches to fabricate bulk, dense and contamination-free UFG and NS metallic materials. However, high density of dislocations and unstable microstructure were usually induced in these UFG and NS metallic materials, resulting in poor tensile plasticity and fatigue properties. In this study, bulk UFG and NS Cu-Al alloys were successfully prepared via friction stir processing (FSP) with additional forced water cooling. FSP Cu-Al alloys exhibited uniform recrystallized microstructure with equiaxed ultrafine grains, and the grain sizes reduced gradually as the stacking fault energy (SFE) decreased. Abundant nano-twin layers formed in the ultrafine grains of FSP Cu-Al alloys with low SFEs, which further refined the ultrafine grains and NS microstructure was achieved. The strength of the FSP Cu-Al alloys increased clearly with decreasing the SFEs due to the gradually refined microstructure, but the uniform elongation increased initially and then decreased in the Cu-Al alloy with the lowest SFE.

Key words:  friction stir processing      Cu-Al alloy      stacking fault energy      nano-twin layer      mechanical property     
Received:  18 October 2013     
ZTFLH:  TG172  
Fund: Supported by National Natural Science Foundation of China (Nos.51071150, 51301178 and 51331008)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00661     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/245

Fig.1  

搅拌摩擦加工(FSP) Cu-Al合金的EBSD微观组织

Fig.2  

FSP Cu-Al合金的晶粒尺寸分布图

Fig.3  

FSP Cu-Al合金的晶界取向差分布图

Fig.4  

FSP Cu-Al合金的TEM微观组织形貌

Fig.5  

粗晶(CG)及FSP Cu-Al合金的拉伸性能曲线

[1] Valiev R. Nat Mater, 2004; 3: 511
[2] Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351
[3] Tao N R, Lu K. J Mater Sci Technol, 2007; 23: 771
[4] Mughrabi H, Höppel H W. Int J Fatigue, 2010; 32: 1413
[5] Goto M, Han S Z, Euh K, Kang J H, Kim S S. Acta Mater, 2010; 58: 6249
[6] An X H. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, 2012
(安祥海. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[7] Mishra R S, Mahoney M W, McFadden S X, Mara N A, Mukherjee A K. Scr Mater, 1999; 42: 163
[8] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[9] Ma Z Y. Metall Mater Trans, 2008; 39A: 642
[10] Xue P, Xiao B L, Ma Z Y. Mater Sci Eng, 2012; A532: 106
[11] Su J Q, Nelson T W, Sterling C J. Scr Mater, 2005; 52: 135
[12] Xue P, Xiao B L, Ma Z Y. Scr Mater, 2013; 68: 751
[13] Chang C I, Du X H, Huang J C. Scr Mater, 2007; 57: 209
[14] Xue P, Xiao B L, Wang W G, Zhang Q, Wang D, Wang Q Z, Ma Z Y. Mater Sci Eng, 2013; A575: 30
[15] Xue P, Xiao B L, Ma Z Y. J Mater Sci Technol, 2013; 29: 1111
[16] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 954
[17] Qu S, An X H, Yang H J, Huang C X, Yang G, Zang Q S, Wang Z G, Wu S D, Zhang Z F. Acta Mater, 2009; 57: 1586
[18] Zhang P, An X H, Zhang Z J, Wu S D, Li S X, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 67: 871
[19] Murr L E. Interfacial Phenomena in Metals and Alloys. Massachusetts: Addison-Wesley Publishing Company, 1975: 142
[20] Zhang Y, Tao N R, Lu K. Acta Mater, 2011; 59: 6048
[21] Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[22] Meyers M A,Chawla K K. Mechanical Behavior of Materials. 2nd Ed., Cambridge: Cambridge University Press, 2009: 337
[23] McNelley T R, Swaminathan S, Su J Q. Scr Mater, 2008; 58: 349
[24] Jata K V, Semiatin S L. Scr Mater, 2000; 43: 743
[25] Su J Q, Nelson T W, Sterling C J. J Mater Res, 2003; 18: 1757
[26] Feng A H, Ma Z Y. Acta Mater, 2009; 57: 4248
[27] An X H, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 66: 227
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[15] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
No Suggested Reading articles found!