Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 245-251    DOI: 10.3724/SP.J.1037.2013.00661
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR PROCESSED ULTRAFINE-GRAINED AND NANOSTRUCTURED Cu-Al ALLOYS
XUE Peng, XIAO Bolü, MA Zongyi
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  HTML  PDF(4287KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ultrafine-grained (UFG) and nanostructured (NS) materials have attracted considerable interest due to their special microstructure and mechanical properties. Severe plastic deformation is one of the optimum approaches to fabricate bulk, dense and contamination-free UFG and NS metallic materials. However, high density of dislocations and unstable microstructure were usually induced in these UFG and NS metallic materials, resulting in poor tensile plasticity and fatigue properties. In this study, bulk UFG and NS Cu-Al alloys were successfully prepared via friction stir processing (FSP) with additional forced water cooling. FSP Cu-Al alloys exhibited uniform recrystallized microstructure with equiaxed ultrafine grains, and the grain sizes reduced gradually as the stacking fault energy (SFE) decreased. Abundant nano-twin layers formed in the ultrafine grains of FSP Cu-Al alloys with low SFEs, which further refined the ultrafine grains and NS microstructure was achieved. The strength of the FSP Cu-Al alloys increased clearly with decreasing the SFEs due to the gradually refined microstructure, but the uniform elongation increased initially and then decreased in the Cu-Al alloy with the lowest SFE.
Key words:  KEY WORDS friction stir processing      Cu-Al alloy      stacking fault energy      nano-twin layer      mechanical property     
ZTFLH:  TG172  
Fund: Supported by National Natural Science Foundation of China (Nos.51071150, 51301178 and 51331008)
Corresponding Authors:  MA Zongyi, professor, Tel: (024)83978908, E-mail: zyma@imr.ac.cn   

Cite this article: 

XUE Peng,XIAO Bolü,MA Zongyi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR PROCESSED ULTRAFINE-GRAINED AND NANOSTRUCTURED Cu-Al ALLOYS. Acta Metall Sin, 2014, 50(2): 245-251.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00661     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/245

[1] Valiev R. Nat Mater, 2004; 3: 511
[2] Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351
[3] Tao N R, Lu K. J Mater Sci Technol, 2007; 23: 771
[4] Mughrabi H, H?ppel H W. Int J Fatigue, 2010; 32: 1413
[5] Goto M, Han S Z, Euh K, Kang J H, Kim S S. Acta Mater, 2010; 58: 6249
[6] An X H. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, 2012
(安祥海. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[7] Mishra R S, Mahoney M W, McFadden S X, Mara N A, Mukherjee A K. Scr Mater, 1999; 42: 163
[8] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[9] Ma Z Y. Metall Mater Trans, 2008; 39A: 642
[10] Xue P, Xiao B L, Ma Z Y. Mater Sci Eng, 2012; A532: 106
[11] Su J Q, Nelson T W, Sterling C J. Scr Mater, 2005; 52: 135
[12] Xue P, Xiao B L, Ma Z Y. Scr Mater, 2013; 68: 751
[13] Chang C I, Du X H, Huang J C. Scr Mater, 2007; 57: 209
[14] Xue P, Xiao B L, Wang W G, Zhang Q, Wang D, Wang Q Z, Ma Z Y. Mater Sci Eng, 2013; A575: 30
[15] Xue P, Xiao B L, Ma Z Y. J Mater Sci Technol, 2013; 29: 1111
[16] An X H, Lin Q Y, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2011; 64: 954
[17] Qu S, An X H, Yang H J, Huang C X, Yang G, Zang Q S, Wang Z G, Wu S D, Zhang Z F. Acta Mater, 2009; 57: 1586
[18] Zhang P, An X H, Zhang Z J, Wu S D, Li S X, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 67: 871
[19] Murr L E. Interfacial Phenomena in Metals and Alloys. Massachusetts: Addison-Wesley Publishing Company, 1975: 142
[20] Zhang Y, Tao N R, Lu K. Acta Mater, 2011; 59: 6048
[21] Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[22] Meyers M A, Chawla K K. Mechanical Behavior of Materials. 2nd Ed., Cambridge: Cambridge University Press, 2009: 337
[23] McNelley T R, Swaminathan S, Su J Q. Scr Mater, 2008; 58: 349
[24] Jata K V, Semiatin S L. Scr Mater, 2000; 43: 743
[25] Su J Q, Nelson T W, Sterling C J. J Mater Res, 2003; 18: 1757
[26] Feng A H, Ma Z Y. Acta Mater, 2009; 57: 4248
[27] An X H, Wu S D, Zhang Z F, Figueiredo R B, Gao N, Langdon T G. Scr Mater, 2012; 66: 227
[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[3] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[4] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[5] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[6] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[7] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[8] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[9] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[10] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[11] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[12] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[13] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[14] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[15] Xingpin CHEN,Wenjia LI,Ping REN,Wenquan CAO,Qing LIU. Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels[J]. 金属学报, 2019, 55(8): 951-957.
No Suggested Reading articles found!