Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 238-244    DOI: 10.3724/SP.J.1037.2013.00810
Current Issue | Archive | Adv Search |
DYNAMIC RECRYSTALLIZATION DOMINATED WEAR MECHANISM OF NANOSTRUCTURED Cu
HAN Zhong(), YAO Bin, LU Ke
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

HAN Zhong, YAO Bin, LU Ke. DYNAMIC RECRYSTALLIZATION DOMINATED WEAR MECHANISM OF NANOSTRUCTURED Cu. Acta Metall Sin, 2014, 50(2): 238-244.

Download:  HTML  PDF(6619KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Grain refinement induced increase in hardness is of interest from a tribological point of view. Most of nanostructured metals show an enhanced wear resistance in comparison with their coarse-grained counterparts. To understand the related wear mechanism, the tribological properties and worn subsurface structure of nanostructured Cu were investigated under both dry and oil-lubricated sliding conditions, respectively. The wear resistance and worn subsurface structure of nanostructured Cu were compared under different conditions. The results indicate that nanostructured Cu exhibits a dynamic recrystallization (DRX) dominated wear mechanism under both conditions. A pronounced correlation is identified that wear rate increases significantly with an increasing grain size or decreasing hardness of DRX structure.

Key words:  nanostructured metal      Cu      wear      subsurface structure      dynamic recrystallization     
Received:  12 December 2013     
ZTFLH:  TG146.1  
Fund: Supported by National Basic Research Program of China (No.2012CB932201), National Natural Science Foundation of China (No.51231006), International S&T Cooperation Project of China (No.2010DFB54010) and Danish-Chinese Center for Nano-metals (No.51261130091)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00810     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/238

Sample Hardness / GPa
As-DPD 1.53±0.08
DPD, 80 ℃ 1.38±0.06
DPD, 100 ℃ 1.41±0.09
DPD, 120 ℃ 1.37±0.03
DPD, 140 ℃ 1.18±0.03
DPD, 160 ℃ 0.82±0.05
DPD, 200 ℃ 0.68±0.05
CG, 700 ℃, 120 min 0.65±0.05
表1  DPD Cu样品退火条件及其硬度
Fig.1  

干摩擦条件载荷为30 N时DPD Cu及其退火态样品耐磨性随硬度的变化

Fig.2  

油润滑条件载荷为30 N时DPD Cu及其退火态样品耐磨性随硬度的变化

Fig.3  

不同润滑条件下载荷为10 N时DPD Cu和DPD Cu 80 oC退火样品磨痕亚表层结构

Fig.4  

不同润滑条件下载荷为20和30 N 时DPD Cu样品磨痕亚表层结构

Fig.5  

不同润滑条件下载荷为10 N 和 20 N 时CG Cu样品磨痕亚表层结构

Fig.6  

油润滑和摩擦滑动条件下DPD Cu样品磨损量随DRX晶粒尺寸变化

Fig.7  

油润滑和干摩擦滑动条件下CG Cu磨损量随DRX晶粒尺寸变化

Fig.8  

干摩擦滑动条件下DPD Cu及其退火态样品磨损量随DRX层显微硬度变化

[1] Archard J F. J Appl Phy, 1953; 24: 981
[2] Shafiei M, Alpas A T. Wear, 2008; 265: 429
[3] Farhat Z N, Ding Y, Northwood D O, Alpas A T. Mater Sci Eng, 1996; A206: 302
[4] Jeong D H, Gonzalez F, Palumbo G, Aust K T, Erb U. Scr Mater, 2001; 44: 493
[5] Wang L, Gao Y, Xu T, Xue Q. Mater Chem Phys, 2006; 99: 96
[6] Kong X L, Liu Y B, Qiao L J. Wear, 2004; 256: 747
[7] La P Q, Ma J Q, Zhu Y T, Yang J, Liu W M, Xue Q J, Valiev R Z. Acta Mater, 2005; 53: 5167
[8] Zhang Y S, Wang K, Han Z, Lu K. J Mater Res, 2008; 23: 150
[9] Han Z, Zhang Y S, Lu K. J Mater Sci Technol, 2008; 24: 483
[10] Jungk J M, Michael J R, Prasad S V. Acta Mater, 2008; 56: 1956
[11] Rigney D A, Divakar D, Kuo S M. Scr Metall Mater, 1992; 27: 975
[12] Hughes D A, Dawson D B, Korellis J S, Weingarten L I. J Mater Eng Perform, 1994; 3: 459
[13] Dautzenberg J H. Wear, 1980; 60: 401
[14] Kuo S M, Rigney D A. Mater Sci Eng, 1992; A157: 131
[15] Emge A, Karthikeyan S, Rigney D A. Wear, 2009; 267: 562
[16] Moshkovich A, Perfilyev V, Bendikov T, Lapsker I, Cohen H, Rapoport L. Acta Mater, 2010; 58: 4685
[17] Meshi L, Samuha S, Cohen S R, Laikhtman A, Moshkovich A, Perfilyev V, Lapsker I, Rapoport L. Acta Mater, 2011; 59: 342
[18] Rigney D A, Karthikeyan S. Tribol Lett, 2010; 39: 3
[19] Rupert T J, Schuh C A. Acta Mater, 2010; 58: 4137
[20] Rupert T J, Cai W J, Schuh C A. Wear, 2013; 298-299: 120
[21] Li Y S, Tao N R, Lu K. Acta Mater, 2008; 56: 230
[22] Li Y S, Zhang Y, Tao N R, Lu K. Scr Mater, 2008; 59: 475
[23] Yao B, Han Z, Lu K. Wear, 2011; 271: 1609
[24] Hall E O. Proc Phys Soc, 1951; 64B: 747
[25] Petch N J. J Iron Steel Inst, 1953; 174: 25
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[6] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[7] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[8] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[9] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[10] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[11] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[12] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[13] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[14] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[15] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
No Suggested Reading articles found!