Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (4): 467-477    DOI: 10.11900/0412.1961.2022.00548
Overview Current Issue | Archive | Adv Search |
Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals
ZHANG Zhefeng(), LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng
Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals. Acta Metall Sin, 2023, 59(4): 467-477.

Download:  HTML  PDF(2222KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Stacking fault energy (SFE) can play a crucial role in plastic deformation and damage mechanisms of face-centered cubic (fcc) metals. This study mainly summarized the following results: (1) With the reduction of SFE, the slip mode of fcc metals gradually changes from a facile cross-slip wavy mode to a planar mode until deformation twinning occurs; (2) The concept of effective SFE is applied to investigate the variation of SFE with dislocation density in the fcc metals, with the increase in dislocation density, the effective SFE increases; (3) The reduction of SFE is not the only factor determining the formation of deformation twins in fcc metals. In terms of calculating the competition between simulated slipping and twinning using the first principles, the critical criterion for forming deformation twinning in fcc metals was established; (4) The fatigue dislocation configuration of high-, medium-, and low-SFE fcc metals were analyzed and the judgment conditions for forming regular persistent slip bands (PSBs) are proposed; (5) With the increase in Al content, the SFE of Cu-Al alloy decreases, resulting in a simultaneous increasing trend in the tensile strength and the uniform elongation due to the increasing planar slip degree; (6) The exponential strain-hardening model can accurately describe the tensile strain-hardening process of Cu-Al alloys. The quantitative relationship among yield strength, tensile strength, and uniform elongation of Cu-Al alloy with different alloy compositions and microstructure states was successfully predicted; (7) With the increase in Al content, the fatigue strength of Cu-Al alloy is improved. Increasing Al content at the same strain amplitude will enhance its low-cycle fatigue life. Based on the experimental results above, it is shown that the alloy composition affects the deformation and damage mechanisms, and the evolution process of microscopic defects (dislocations, twins) in fcc metals and alloys. Thus, it drastically affects the tensile and fatigue properties of the fcc metals and alloys. These results provide experimental evidence and a theoretical basis for improving the mechanical properties and service reliability of fcc metals and alloys via alloy designing.

Key words:  face-centered cubic metal      stacking fault energy      slip      twinning      strength      plasticity      fatigue strength     
Received:  27 October 2022     
ZTFLH:  TG135  
Fund: National Natural Science Foundation of China(52130002);National Natural Science Foundation of China(51901230)
Corresponding Authors:  ZHANG Zhefeng, professor, Tel: (024)23971043, E-mail: zhfzhang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00548     OR     https://www.ams.org.cn/EN/Y2023/V59/I4/467

Fig.1  Typical slip modes in face-centered cubic (fcc) metals
(a) wavy slip bands (b) planar slip bands
(c) wavy slip dislocation pattern (d) planar slip dislocation pattern
(e) illustration of wavy slip mode (f) illustration of planar slip mode
ElementRef.[7]Ref.[11]Ref.[3]Range
Al150166166150-166
Ni225128128128-225
Cu70784040-78
Au4545-45
Ag25221616-25
Table 1  Stacking fault energies of typical fcc metals[3,7,11]
Fig.2  Schematic illustrations for competition of slipping and twining
(a) projection of fcc structure on the (111) plane[25] ( b —Burgers vector, bp1 and bp2—partial Burgers vectors)
(b) generalized stacking fault energy (GSFE) variation with a complete slipping[24] (γusf—unstable stacking fault energy, γisf—instinsic stacking fault energy)
(c) GSFE variation with deformation twinning[24] (γutf—unstable twinning fault energy)
Fig.3  Illustration presents the transition from slipping to twinning for various fcc metals in α-β coordinate system (ϕ—angle from α + β = 2, α = γisf / γusf and β = γutf / γusf. The black line is a critical boundary, under which those metals or alloys can form deformation twinning (DT) by the twinning deformation mechanism, while over which these metals or alloys are very difficult to form DT. α + β = 2 is the critical criterion for the two competitive mechanisms between deformation twinning and slipping)[25]
Fig.4  Schematic diagram of the formation of persistent slip band ladders or not in different kinds of fcc metals or alloys[29] (γsf—stacking fault energy, b—Burgers vector module, SF—stacking fault, PSB—persistent slip band)
Fig.5  Influences of stacking fault energy (SFE) and crystallographic orientation on the fatigue cracking modes along twin boundaries (TBs) or slip bands (SBs)[35,36] (A: Cu; B: Cu-10%Zn; C: Cu-5%Al; D: Cu-8%Al; E: Cu-32%Zn; F: Cu-16%Al)
Fig.6  Trade-off relation between tensile strength and uniform elongation of pure Cu and Cu-Al alloys with different Al contents and grain sizes[37] (CG—course grain, FG—fine grain, UFG—ultra-fine grain, NG—nano grain, SISP—synchronously improved strength and plasticity)
Fig.7  Fundamental low cycle fatigue (ultra-low cycle fatigue) properties of pure Cu and Cu-Al alloys[37]
(a) cyclic hardening curves (total strain amplitude Δε / 2 = 8.0%)
(b) strain-life (E-N) curves
(c) change of Wa with the number of cycle Nε / 2 = 8.0%, Wa—hysteresis energy)
(d) hysteresis energy-life (W-N) curves (Ws—saturated hysteresis energy)
Fig.8  Relationships between ultimate tensile strength and fatigue strength of pure Cu and Cu-Al alloys
(a) relationships between fatigue strength and tensile strength (CR—cold rolling, AN—annealing, FSP—friction stir processing, SPD—severe plastic deformation, ECAP—equal channel angular processing, MG—micro grain, HPT—high pressure torsion)[37,38,46,47]
(b) relationships between fatigue strength and yield strength[38]
1 Pan J S, Tong J M, Tian M B. Fundamentals of Materials Science [M]. Beijing: Tsinghua University Press, 2011: 1
潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011: 1
2 Anderson P M, Hirth J P, Lothe J. Theory of Dislocations [M]. 3rd Ed., Cambridge: Cambridge University Press, 2017: 1
3 Wang Z R. Cyclic deformation response of planar-slip materials and a new criterion for the wavy-to-planar-slip transition [J]. Philos. Mag., 2004, 84: 351
doi: 10.1080/14786430310001639824
4 Lukáš P, Klesnil M. Cyclic stress-strain response and fatigue life of metals in low amplitude region [J]. Mater. Sci. Eng., 1973, 11: 345
doi: 10.1016/0025-5416(73)90125-0
5 Mughrabi H. On the current understanding of strain gradient plasticity [J]. Mater. Sci. Eng., 2004, A387-389: 209
6 de Campos M F. Selected values for the stacking fault energy of face centered cubic metals [J]. Mater. Sci. Forum, 2008, 591-593: 708
doi: 10.4028/www.scientific.net/MSF.591-593
7 Dillamore I L, Smallman R E, Roberts W T. A determination of the stacking-fault energy of some pure F.C.C. metals [J]. Philos. Mag., 1964, 9: 517
doi: 10.1080/14786436408222963
8 Cockayne D J H, Jenkins M L, Ray I L F. The measurement of stacking-fault energies of pure face-centred cubic metals [J]. Philos. Mag., 1971, 24: 1383
doi: 10.1080/14786437108217419
9 Stobbs W M, Sworn C H. The weak beam technique as applied to the determination of the stacking-fault energy of copper [J]. Philos. Mag., 1971, 24: 1365
doi: 10.1080/14786437108217418
10 Reed R P, Schramm R E. Relationship between stacking-fault energy and X-ray measurements of stacking-fault probability and microstrain [J]. J. Appl. Phys., 1974, 45: 4705
doi: 10.1063/1.1663122
11 Murr L E. Interfacial Phenomena in Metals and Alloys [M]. Reading: Addison-Wesley, 1975: 1
12 Müllner P, Ferreira P J. On the energy of terminated stacking faults [J]. Philos. Mag. Lett., 1996, 73: 289
doi: 10.1080/095008396180551
13 Pierce D T, Jiménez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory [J]. Acta Mater., 2014, 68: 238
doi: 10.1016/j.actamat.2014.01.001
14 Curtze S, Kuokkala V T, Oikari A, et al. Thermodynamic modeling of the stacking fault energy of austenitic steels [J]. Acta Mater., 2011, 59: 1068
doi: 10.1016/j.actamat.2010.10.037
15 Li K Q. Atomistic simulation of the micromechanisms of plastic deformation in face-centered cubic metals [D]. Shenyang: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2020
李克强. 面心立方金属塑性变形微观机制的原子模拟研究 [D]. 沈阳: 中国科学技术大学(中国科学院金属研究所), 2020
16 Li K Q, Zhang Z J, Li L L, et al. Effective stacking fault energy in face-centered cubic metals [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 873
doi: 10.1007/s40195-018-0718-4
17 Gray III G T, Kaschner G C, Mason T A, et al. The influence of interstitial content, temperature, and strain rate on deformation twin formation [A]. Advances in Twinning. Proceedings International Symposium [C]. 1999 TMS Annual Meeting, 1999: 157
18 Chen M W, Ma E, Hemker K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300: 1275
pmid: 12714676
19 Wu X L, Zhu Y T. Inverse grain-size effect on twinning in nanocrystalline Ni [J]. Phys. Rev. Lett., 2008, 101: 025503
20 Meyers M A, Vöhringer O, Lubarda V A. The onset of twinning in metals: A constitutive description [J]. Acta Mater., 2001, 49: 4025
doi: 10.1016/S1359-6454(01)00300-7
21 Rogers H C, Reed-Hill R E, Hirth J P. Deformation Twinning [M]. New York: Gordon and Breach Science Publishers, 1964: 1
22 Tadmor E B, Bernstein N. A first-principles measure for the twinnability of FCC metals [J]. J. Mech. Phys. Solids, 2004, 52: 2507
doi: 10.1016/j.jmps.2004.05.002
23 Asaro R J, Suresh S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins [J]. Acta Mater., 2005, 53: 3369
doi: 10.1016/j.actamat.2005.03.047
24 Cai T, Zhang Z J, Zhang P, et al. Competition between slip and twinning in face-centered cubic metals [J]. J. Appl. Phys., 2014, 116: 163512
doi: 10.1063/1.4898319
25 Cai T. Computation and simulation for deformation mechanisms of face-centered cubic metals and alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2016
蔡 拓. 面心立方金属及合金变形机制计算模拟 [D]. 沈阳: 中国科学院金属研究所, 2016
26 Wei X M, Zhang J M, Xu K W. Generalized stacking fault energy in FCC metals with MEAM [J]. Appl. Surf. Sci., 2007, 254: 1489
doi: 10.1016/j.apsusc.2007.07.078
27 Mughrabi H. The cyclic hardening and saturation behaviour of copper single crystals [J]. Mater. Sci. Eng., 1978, 33: 207
doi: 10.1016/0025-5416(78)90174-X
28 Winter A T. A model for the fatigue of copper at low plastic strain amplitudes [J]. Philos. Mag., 1974, 30: 719
doi: 10.1080/14786437408207230
29 Li P. Study on the cyclic deformation behavior of face-centered cubic crystals [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009
李 鹏. 面心立方晶体循环变形行为研究 [D]. 沈阳: 中国科学院金属研究所, 2009
30 Woods P J. Low-amplitude fatigue of copper and copper-5 at.% aluminium single crystals [J]. Philos. Mag., 1973, 28: 155
31 Wu X M, Wang Z G, Li G Y. Cyclic deformation and strain burst behavior of Cu-7at.%Al and Cu-16at.%Al single crystals with different orientations [J]. Mater. Sci. Eng., 2001, A314: 39
32 Zhang Z F, Wang Z G. Grain boundary effects on cyclic deformation and fatigue damage [J]. Prog. Mater. Sci., 2008, 53: 1025
doi: 10.1016/j.pmatsci.2008.06.001
33 Qu S, Zhang P, Wu S D, et al. Twin boundaries: Strong or weak? [J]. Scr. Mater., 2008, 59: 1131
doi: 10.1016/j.scriptamat.2008.07.037
34 Zhang P, Zhang Z J, Li L L, et al. Twin boundary: Stronger or weaker interface to resist fatigue cracking [J]. Scr. Mater., 2012, 66: 854
doi: 10.1016/j.scriptamat.2012.01.028
35 Zhang Z J. Study on the effect of delamination energy on strength-plasticity matching and fatigue behavior of single-phase copper-zinc alloy [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2013
张振军. 层错能对单相铜锌合金强度塑性匹配及疲劳行为影响研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2013
36 Zhang Z J, Zhang P, Li L L, et al. Fatigue cracking at twin boundaries: Effects of crystallographic orientation and stacking fault energy [J]. Acta Mater., 2012, 60: 3113
doi: 10.1016/j.actamat.2012.02.016
37 Liu R. Study on tensile and fatigue properties of copper-aluminum alloy [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2018
刘 睿. 铜铝合金拉伸与疲劳性能研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2018
38 An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems [J]. Prog. Mater. Sci., 2019, 101: 1
doi: 10.1016/j.pmatsci.2018.11.001
39 Yang H K, Tian Y Z, Zhang Z F. Revealing the mechanical properties and microstructure evolutions of Fe-22Mn-0.6C-(x)Al TWIP steels via Al alloying control [J]. Mater. Sci. Eng., 2018, A731: 61
40 Sun S J, Tian Y Z, Lin H R, et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure [J]. Mater. Des., 2017, 133: 122
doi: 10.1016/j.matdes.2017.07.054
41 Zhang Z F, Shao C W, Wang B, et al. Tensile and fatigue properties and deformation mechanisms of twinning-induced plasticity steels [J]. Acta Metall. Sin., 2020, 56: 476
doi: 10.11900/0412.1961.2019.00389
张哲峰, 邵琛玮, 王 斌 等. 孪生诱发塑性钢拉伸与疲劳性能及变形机制 [J]. 金属学报, 2020, 56: 476
doi: 10.11900/0412.1961.2019.00389
42 Zhang Z J, Qu Z, Xu L, et al. A general physics-based hardening law for single phase metals [J]. Acta Mater., 2022, 231: 117877
doi: 10.1016/j.actamat.2022.117877
43 Zhang Z J, Qu Z, Xu L, et al. Relationship between strength and uniform elongation of metals based on an exponential hardening law [J]. Acta Mater., 2022, 231: 117866
doi: 10.1016/j.actamat.2022.117866
44 Liu R, Zhang Z J, Zhang P, et al. Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: Damage mechanisms and life prediction [J]. Acta Mater., 2015, 83: 341
doi: 10.1016/j.actamat.2014.10.002
45 Liu R, Zhang Z J, Li L L, et al. Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys [J]. Sci. Rep., 2015, 5: 9550
doi: 10.1038/srep09550 pmid: 25828192
46 An X H, Wu S D, Wang Z G, et al. Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys [J]. Acta Mater., 2014, 74: 200
doi: 10.1016/j.actamat.2014.04.053
47 Liu R, Tian Y Z, Zhang Z J, et al. Exploring the fatigue strength improvement of Cu-Al alloys [J]. Acta Mater., 2018, 144: 613
doi: 10.1016/j.actamat.2017.11.019
48 Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2013, A564: 331
49 Han D, Zhang Y J, Li X W. A crucial impact of short-range ordering on the cyclic deformation and damage behavior of face-centered cubic alloys: A case study on Cu-Mn alloys [J]. Acta Mater., 2021, 205: 116559
doi: 10.1016/j.actamat.2020.116559
50 Zhang Y J, Han D, Li X W. Improving the stress-controlled fatigue life of low solid-solution hardening Ni-Cr alloys by enhancing short range ordering degree [J]. Int. J. Fatigue, 2021, 149: 106266
doi: 10.1016/j.ijfatigue.2021.106266
51 Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
doi: 10.1016/j.jmst.2020.06.018
52 George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
doi: 10.1016/j.actamat.2019.12.015
53 Yan J X, Zhang Z J, Zhang P, et al. Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys [J]. J Mater. Sci. Technol., 2023, 139: 232
doi: 10.1016/j.jmst.2022.07.031
54 Zhang P, Zhang Z F. Getting tougher in ultracold [J]. Science, 2022, 378: 947
doi: 10.1126/science.adf2205 pmid: 36454849
55 Liu D, Yu Q, Kabra S, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin [J]. Science, 2022, 378: 978
doi: 10.1126/science.abp8070 pmid: 36454850
56 Hu Q M, Yang R. The endless search for better alloys [J]. Science, 2022, 378: 26
doi: 10.1126/science.ade5503
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[7] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[8] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[9] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[10] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[11] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[12] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[13] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[14] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[15] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
No Suggested Reading articles found!