Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 252-258    DOI: 10.3724/SP.J.1037.2013.00664
Current Issue | Archive | Adv Search |
ELECTROCHEMICAL ACTUATION OF NANOPOROUS GOLD DEFORMED BY COMPRESSION
YE Xinglong, LIU Feng, JIN Haijun()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

YE Xinglong, LIU Feng, JIN Haijun. ELECTROCHEMICAL ACTUATION OF NANOPOROUS GOLD DEFORMED BY COMPRESSION. Acta Metall Sin, 2014, 50(2): 252-258.

Download:  HTML  PDF(1825KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical actuation performance of nanoporous gold samples deformed by compression was investigated. Although the porosity and specific surface area decrease with increasing compression strain, the strain amplitude of actuation which were measured along the compression direction, increases and then decreases with increasing compression strain. The compression also greatly increases the strain energy density of nanoporous gold actuator. The improvement of actuation performance is attributed to the morphology change of nanoporous structure during compression. The understanding of the underlying mechanism requires quantitative characterization of morphology and morphological evolution of nanoporous structure during compression.

Key words:  nanoporous gold      dealloying corrosion      electrochemical actuation      compression      porosity     
Received:  21 October 2013     
ZTFLH:  TG146  
Fund: Supported by National Basic Research Program of China (No.2012CB932202) and National Natural Science Foundation of China (Nos.51171183 and 51222105)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00664     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/252

Fig.1  

纳米多孔金样品的SEM像及压缩应力-应变曲线(加载速率为5×10-4 s-1)

Fig.2  

变形前后纳米多孔金的电化学驱动行为

Fig.3  

比表面积、驱动幅度和致密度随压缩变形量的变化, 以及压缩变形态样品的驱动幅度和比表面积随致密度的变化

Fig.4  

纳米多孔金的弹性模量、驱动可逆变形能量密度以及流变应力随压缩变形量的变化

Fig.5  

结构参数Θ随压缩应变量的变化

Fig.6  

不同压缩变形量的纳米多孔金样品的SEM像

[1] Ding Y, Chen M W, Erlebacher J. J Am Chem Soc, 2004; 126: 6876
[2] Wittstock A, Zielasek V, Biener J, Friend C M, Baeumer M. Science, 2010; 327: 319
[3] Xu C X, Su J X, Xu X H, Liu P P, Zhao H J, Tian F, Ding Y. J Am Chem Soc, 2007; 129: 42
[4] Ye X L, Jin H J. Appl Phys Lett, 2013; 103: 201912
[5] Weissmüller J, Viswanath R N, Kramer D, Zimmer P, Wurschum R,Gleiter H. Science, 2003; 300: 312
[6] Jin H J, Weissmüller J. Science, 2011; 332: 1179
[7] Kramer D, Viswanath R N, Weissmüller J. Nano Lett, 2004; 4: 793
[8] Jin H J, Wang X L, Parida S, Wang K, Seo M, Weissmüller J. Nano Lett, 2010; 10: 187
[9] Jin H J, Weissmüller J. Adv Eng Mater, 2010; 12: 714
[10] Weissmüller J, Cahn J W. Acta Mater, 1997; 45: 1899
[11] Weissmüller J, Duan H L, Farkas D. Acta Mater, 2010; 58: 1
[12] Diao J K, Gall K, Dunn M L. Nat Mater, 2003; 2: 656
[13] Ibach H. Surf Sci Rep, 1997; 29: 193
[14] Biener J, Wittstock A, Zepeda-Ruiz L, Biener M M, Kramer D, Viswanath R N, Weissmüller J, Viswanath R N, Baümer M, Hamza A V. Nat Mater, 2009; 8: 47
[15] Erlebacher J, Aziz M J, Karma A, Dimitrov N, Sieradzki K. Nature, 2001; 410: 450
[16] Weissmüller J, Newman R C, Jin H J, Hodge A M, Kysar J W. MRS Bull, 2009; 34: 577
[17] Shao L H, Biener J, Jin H J, Biener M M, Baumann T F, Weissmüller J. Adv Funct Mater, 2012; 22: 3029
[18] Jin H J, Parida S, Kramer D, Weissmüller J. Surf Sci, 2008; 602: 3588
[19] Jin H J, Kurmanaeva L, Schmauch J, Roesner H, Ivanisenko Y, Weissmüller J. Acta Mater, 2009; 57: 2665
[20] Gibson L J,Ashby M F. Cellular Solids: Structure and Properties.Cambridge: Cambridge University Press, 1997: 186
[21] HodgeA M, DoucetteR T, Biener M M, Biener J, Cervantes O, Hamza A V. J Mater Res, 2009; 24: 1600
[22] Shao L H, Jin H J, Viswanath R N,Weissmüller J. EPL, 2010; 89: 66001
[1] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[2] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[3] LIN Pengcheng, PANG Yuhua, SUN Qi, WANG Hangduo, LIU Dong, ZHANG Zhe. 3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. 金属学报, 2021, 57(5): 605-612.
[4] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[5] REN Dechun, ZHANG Huibo, ZHAO Xiaodong, WANG Fuyu, HOU Wentao, WANG Shaogang, LI Shujun, JIN Wei, YANG Rui. Influence of Manufacturing Parameters on the Properties of Electron Beam Melted Ti-Ni Alloy[J]. 金属学报, 2020, 56(8): 1103-1112.
[6] ZHAO Manman, QIN Sen, FENG Jie, DAI Yongjuan, GUO Dong. Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel[J]. 金属学报, 2020, 56(7): 960-968.
[7] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[8] Li ZHOU,Pengfei ZHANG,Quanzhao WANG,Bolü XIAO,Zongyi MA,Tao YU. Multi-Scale Study on the Fracture Behavior of Hot Compression B4C/6061Al Composite[J]. 金属学报, 2019, 55(7): 911-918.
[9] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[10] Zhipeng WAN, Tao WANG, Yu SUN, Lianxi HU, Zhao LI, Peihuan LI, Yong ZHANG. Dynamic Softening Mechanisms of GH4720Li AlloyDuring Hot Deformation[J]. 金属学报, 2019, 55(2): 213-222.
[11] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
[12] XIONG Jian,WEI Dean,LU Songjiang,KAN Qianhua,KANG Guozheng,ZHANG Xu. A Three-Dimensional Discrete Dislocation Dynamics Simulation on Micropillar Compression of Single Crystal Copper with Dislocation Density Gradient[J]. 金属学报, 2019, 55(11): 1477-1486.
[13] Zhiming GAO, Wanqi JIE, Yongqin LIU, Haijun LUO. Formation Mechanism and Coupling Prediction of Microporosity and Inverse Segregation: A Review[J]. 金属学报, 2018, 54(5): 717-726.
[14] Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy[J]. 金属学报, 2017, 53(5): 583-591.
[15] Jie WU,Lei XU,Zhengguan LU,Yuyou CUI,Rui YANG. PREPARATION OF POWDER METALLURGY Ti-22Al-24Nb-0.5Mo ALLOYS ANDELECTRON BEAM WELDING[J]. 金属学报, 2016, 52(9): 1070-1078.
No Suggested Reading articles found!