Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 164-169    DOI: 10.3724/SP.J.1037.2011.00420
论文 Current Issue | Archive | Adv Search |
EFFECT OF EQUAL–CHANNEL ANGULAR PRESSING ON THE MICROSTRUCTURES AND TENSILE PROPERTIES OF 18Ni(C–250) MARAGING STEEL
YANG Muxin 1,2, YANG Gang 2, LIU Zhengdong 2, WANG Chang 2, HU Chao 2, HUANG Chongxiang 3
1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2. Institute for Structural Materials, Central Iron and Steel Research Institute, Beijing 100081
3. College of Architecture and Environment, Sichuan University, Chengdu 610065
Cite this article: 

YANG Muxin YANG Gang LIU Zhengdong WANG Chang HU Chao HUANG Chongxiang . EFFECT OF EQUAL–CHANNEL ANGULAR PRESSING ON THE MICROSTRUCTURES AND TENSILE PROPERTIES OF 18Ni(C–250) MARAGING STEEL. Acta Metall Sin, 2012, 48(2): 164-169.

Download:  PDF(1043KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  An 18Ni (C–250) maraging steel was successfully processed by equal–channel angular pressing (ECAP) for a single pass at room temperature. After ECAP deformation, the peak aging time was cut obviously and the peak strength of the steel was enhanced about 100 MPa. Microstructural observations showed that the martensite laths of 18Ni maraging steel were elongated to more narrow bands with a width of 100—200 nm after ECAP deformation, and the width of martensite lath was not affected by the subsequent aging treatment. ECAP deformation has significant influence on the size of rod–shaped δ–Ni3Mo precipitates. It was observed that the widths (diameters) of precipitates in specimens under treatments of solution+480℃, 4 h, solution+ECAP+480℃, 4 h and solution+ECAP+460 ℃, 4 h are 4.92, 12.33 and 3.54 nm, respectively. Additionally, a decomposition of the δ–Ni3Mo precipitates was accelerated after the peak aging time, resulting in a decrease in the strength.
Key words:  maraging steel      equal–channel angular pressing (ECAP)      mechanical property      aging hardening     
Received:  07 July 2011     
ZTFLH: 

TG142.1

 
Fund: 

Supported by National Natural Science Foundation of China (No.50971045)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00420     OR     https://www.ams.org.cn/EN/Y2012/V48/I2/164

[1] ASM Handbook Committee. ASM Handbook. Volume 1, 10th Ed., Ohio: ASM International, 1990: 739

[2] Li X D. PhD Thesis, Harbin Institute of Technology, 1993

(李晓东. 哈尔滨工业大学博士学位论文, 1993)

[3] Sha W, Guo Z. Maraging Steels: Modelling of Microstructure, Properties and Applications. Oxford: Woodhead Publishing, 2009: 3

[4] Roberson J A, Adair A M. Trans TMS–AIME, 1969; 245: 1937

[5] Baker A J, Swann P R. Trans ASM, 1964; 57: 1008

[6] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881

[7] Huang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S X. Acta Mater, 2006; 54: 655

[8] Huang C X, Yang G, Wang C, Zhang Z F, Wu S D. Metall Mater Trans, 2011; 42A: 2061

[9] Yang G, Huang C X, Wang C, Zhang L Y, Hu C, Zhang Z F, Wu S D. Mater Sci Eng, 2009; A515: 199

[10] Huang C X, Yang G, Gao Y L, Wu S D, Zhang Z F. Mater Sci Eng, 2008; A485: 643

[11] He Y, Yang K, Kong F Y, Qu W S, Su G Y. Acta Metall Sin, 2002; 38: 278

(何毅, 杨柯, 孔凡亚, 曲文生, 苏国跃. 金属学报, 2002; 38: 278)

[12] Yang G, Yin F. Mater Sci Forum, 2010; 667–669: 879

[13] Mobarake M I, Nili–Ahmadabadia M, Poorganji B, Fatehi A, Shirazi H, Furuhara T, Parsaa H, Nejad S H. Mater Sci Eng, 2008; A491: 172

[14] Yang M X, Yang G, Liu Z D, Wang C, Huang C X. Mater Sci Forum, 2010; 667–669: 421

[15] Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon T G. Scr Mater, 1996; 35: 143

[16] Marder J M, Marder A R. Trans ASM, 1969; 62: 1

[17] Tsai C K, Chu C, He C Z, Shen H W, Luo L K, Song W S, Yu W L. Acta Metall Sin, 1977; 13: 289

(蔡其巩, 朱静, 何崇智, 申辉旺, 罗力更, 宋为顺, 于维乐. 金属学报, 1977; 13: 289)

[18] Ye H Q, Zou S B. Acta Metall Sin, 1979; 15: 69

(叶恒强, 邹三本. 金属学报, 1979; 15: 69)

[19] Tsai C K, Zhu Q, He C Z. Acta Phys Sin, 1974; 23: 178

(蔡其巩, 朱静, 何崇智. 物理学报, 1974; 23: 178)

[20] Tewari R, Mazumder S, Batra I S, Dey G K, Banerjee S. Acta Mater, 2000; 48: 1187

[21] Yin Z D, Li X D, Li H B, Lai Z H. Acta Metall Sin, 1995; 31: 7

(尹钟大, 李晓东, 李海滨, 来忠红. 金属学报, 1995; 31: 7)

[22] Yong Q L, MaMT. Micro–alloyed Steel—Physics and Mechanics Metallurgy. Beijing: Metallurgy Industry Press, 1989: 315

(雍岐龙, 马鸣图. 微合金钢-物理和力学冶金. 北京: 冶金工业出版社, 1989: 315)

[23] Martin J W, Doherty R D. Translated by Li X L. Stability of Microstructure in Metallic Systems. Beijing: Science Press, 1984: 55

(Martin J W, Doherty R D. 李新立 译. 金属系中显微结构的稳定性. 北京: 科学出版社, 1984: 55)

[24] He Y, Liu K, Yang K. Acta Metall Sin, 2003; 39: 381

(何毅, 刘 凯, 杨柯. 金属学报, 2003; 39: 381)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!