INFLUENCE OF MIXING ENTHALPY ON THE MICROSTRUCTURE OF LASER MULTILAYER DEPOSITED Ti–6Al–4V ALLOY
ZHANG Fengying1, TAN Hua2, CHEN Jing2, LIN Xin2, HUANG Weidong2
1.School of Materials Science and Engineering, Chang’an University, Xi’an 710064
2.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
Cite this article:
ZHANG Fengying TAN Hua CHEN Jing LIN Xin HUANG Weidong. INFLUENCE OF MIXING ENTHALPY ON THE MICROSTRUCTURE OF LASER MULTILAYER DEPOSITED Ti–6Al–4V ALLOY. Acta Metall Sin, 2012, 48(2): 159-163.
Abstract XRD and OM were used to study the phase constitution and solidified structure of the Ti–6Al–4V alloys prepared by laser multi–layer deposited pre–alloyed powder and blended elemental powder. It was found that the deposited layer obtained by using the pre–alloyed powder consists mainly of the epitaxial columnar grains, and the solidified structures change from the columnar grains to the equiaxed grains with increasing laser power. Meanwhile, the solidified structures of the deposited layer obtained by using the blended elemental powders change from large equiaxed grains to epitaxial columnar grains with increasing laser power from 1600 W to 2700 W. Laser scanning velocity has little effect on the morphology of the prior grains in the deposited layer obtained by using the blended elemental powders. The influence of mixing enthalpy on the structures of Ti–6Al–4V alloy was discussed also.
Supported by National Natural Science Foundation of China (No.51105311), China Postdoctoral Science Foundation (No.201104679) and State Key Laboratory of Solidification Processing in NWPU (No.SKLSP201102)
[2] Collins P C, Banerjee R, Banerjee S, Fraser H L. Mater Sci Eng, 2003; A352: 118
[3] Banerjee R, Collins P C, Bhattacharyya D, Banerjee S, Fraser H L. Acta Mater, 2003; 51: 3277
[4] Banerjee R, Bhattacharyya D, Collins P C, Viswanathan G B, Fraser H L. Acta Mater, 2004; 52: 377
[5] Genc A, Banerjee R, Hill D, Fraser H L. Mater Lett, 2006; 60: 859
[6] Nag S, Banerjee R, Fraser H L. Acta Biomater, 2007; 3: 369
[7] Xu X J, Lin X, Huang W D, Wang L. Acta Metall Sin, 2010; 46: 1081
(许小静, 林 鑫, 黄卫东, 王亮. 金属学报, 2010; 46: 1081)
[8] Xu X J, Lin X, Yang M C, Chen J, Huang W D. Acta Metall Sin, 2008; 44: 1013
(许小静, 林 鑫, 杨模聪, 陈静, 黄卫东. 金属学报, 2008; 44: 1013)
[10] Tan H, Chen J, Zhang F Y, Lin X, Huang W D. Rare Met Mater Eng, 2009; 38: 574
(谭华, 陈静, 张凤英, 林鑫, 黄卫东. 稀有金属材料与工程, 2009; 38: 574)
[11] Tan H, Chen J, Lin X, Zhang F Y, Huang W D. J Mater Process Technol, 2008; 198: 454
[12] Lin X, Li Y M, Wang M, Feng L P, Chen J, Huang W D. Sci China, 2003; 33E: 577
(林鑫, 李延民, 王猛, 冯莉萍, 陈静, 黄卫东. 中国科学, 2003; 33E: 577)
[13] Zhang B W, HuW Y, Shu X L. Theory of Embedded Atom Method and Its Application to Materials Science: Atomic Scale Materials Design Theory. Changsha: Hunan University
[14] Guo J J, Su Y Q. Analysis of Thermodynamics and Kinetics in Melting Process of Titanium Alloy. Harbin: Harbin Institute of Technology Press, 1998: 46