Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 170-175    DOI: 10.3724/SP.J.1037.2011.00433
论文 Current Issue | Archive | Adv Search |
HIGH CYCLE FATIGUE BEHAVIOR OF A NICKEL–BASED SINGLE CRYSTAL SUPERALLOY DD98M AT 900  ℃
HAN Guoming 1, ZHANG Zhenxing 2, LI Jinguo 1, JIN Tao 1, SUN Xiaofeng 1, HU Zhuangqi 1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. School of Materials and Metallurgy, Northeastern University, Shenyang 110819
Cite this article: 

HAN Guoming ZHANG Zhenxing LI Jinguo JIN Tao SUN Xiaofeng HU Zhuangqi. HIGH CYCLE FATIGUE BEHAVIOR OF A NICKEL–BASED SINGLE CRYSTAL SUPERALLOY DD98M AT 900  ℃. Acta Metall Sin, 2012, 48(2): 170-175.

Download:  PDF(887KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  High cycle fatigue (HCF) behavior of the second generation single crystal nickel–based superalloy DD98M without Re addition at 900 ℃ was investigated. The results indicate that HCF lifetime is reduced with increase of cyclic stress amplitude. Compared to smooth specimens, the fatigue lifetime and strength of notched specimens are decreased markedly. The fatigue strengths for smooth and notched specimens are 574 MPa and 360 MPa, respectively. Fracture observation by SEM shows that there exist many sites of crack initiation for notched specimens due to stress concentration of the notch, while for smooth specimens, crack generally initiates at pores and inclusions on the surface or subsurface. Deformed microstructures observed by TEM reveal that for smooth specimens, dislocation movement in the matrix is the main deformation mechanism and shearing γ' particles by dislocation pairs occurs occasionally under high stress level. In contrast, cutting γ' phases by partial dislocations, which formed stacking faults in γ', is the dominant deformation mechanism for notched HCF specimens.
Key words:  single crystal superalloy      high cycle fatigue      deformation      fracture      microstructure     
Received:  08 July 2011     
Fund: 

Supported by National Basic Research Program of China (No.210CB631206)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00433     OR     https://www.ams.org.cn/EN/Y2012/V48/I2/170

[1] Cowles B A. Int J Fract, 1996; 80: 147

[2] Gao Y, St¨olken J S, Kumar M, Ritchie R O. Acta Mater, 2007; 55: 3155

[3] Liu L, Husseini N S, Torbet C J, Lee WK, Clarke R, Jones J W, Pollock T M. Acta Mater, 2011; 59: 5103

[4] Yi J Z, Torbet C J, Feng Q, Pollock T M, Jones J W. Mater Sci Eng, 2007; A443: 142

[5] Wright P K, Jain M, Cameron D. Superalloy 2004, TMS, 2004; 657

[6] Antolovich B F, Saxena A, Antolovich S D. Superalloy 1992, TMS, 1992; 727

[7] Zhang J H, Xu Y B, Wang Z G, Hu Z Q. Scr Mater, 1995; 32: 2093

[8] Liu Y, Yu J J, Xu Y, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2007; A454–455: 357

[9] Crompton J S, Martin JW. Metall Trans, 1984; 15A: 1711

[10] Yang F M, Sun X F, Guan H R, Hu Z Q. Trans Nonferrous Met Soc China, 2003; 13: 141

(杨福民, 孙晓峰, 管恒荣, 胡壮麒. 中国有色金属学报, 2003; 13: 141)

[11] Ren W, Nicholas T. Mater Sci Eng, 2003; A357: 141

[12] PilkeyWD. Peterson’s Stress Concentration Factors, New York: Wiley Interscience Publication, 1997: 1

[13] Liu Y. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007

(刘源. 中国科学院金属研究所博士学位论文, 沈阳, 2007)

[14] Suresh S. translated by Wang Z G etc. Fatigue of Materials, Beijing: National Defense Industry Press, 1991: 131

(Suresh S. 王中光等译. 材料的疲劳. 北京: 国防工业出版社. 1993: 131)

[15] Zhang X. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2006

(张炫. 中国科学院金属研究所博士学位论文, 沈阳, 2006)

[16] Ren W, Nicholas T. Mater Sci Eng, 2002; A332: 236

[17] Luk´aˇs P, Kunz L, Svoboda M. Z Metall, 2002; 93: 661

[18] Liu E Z, Zheng Z, Tong J, Ning L K, Guan X R. Acta Metall Sin, 2010; 46: 708

(刘恩泽, 郑 志, 佟健, 宁礼奎, 管秀荣. 金属学报, 2010; 46: 708)

[19] Zhu X, Shyam A, Jones JW, Mayer H, Lasecki J V, Allison J E. Int J Fatigue, 2006; 28: 1566
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[12] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[13] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[14] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[15] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
No Suggested Reading articles found!