Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (7): 903-912    DOI: 10.11900/0412.1961.2020.00329
Research paper Current Issue | Archive | Adv Search |
Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing
XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping()
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
Cite this article: 

XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing. Acta Metall Sin, 2021, 57(7): 903-912.

Download:  HTML  PDF(17182KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this work, a constrained groove pressing experiment was carried out to investigate the influence of constrained groove pressing on precipitated phase dissolution and mechanical properties of China low activation martensitic (CLAM) steels. The aim of this study is to improve the comprehensive service performances of CLAM steels used in the first wall of fusion reactor cladding. The influence of the dissolution and precipitation of precipitates on the mechanical properties of CLAM steel subjected to multi-pass groove pressing was investigated via tensile tests at room temperature and 500oC, microhardness tests, SEM, and TEM. The results show that the grains and precipitated phases are effectively refined after three passes of groove pressing, the volume fraction of grains above 5 μm is reduced to 0.49%, and the average size of M23C6 and MX phases is reduced from 107.32 and 17.12 nm to 93.97 and 13.59 nm, respectively. When the cumulative strain of the billets reaches a value of 2.32 (pass two), the tensile strength and microhardness are found to be 720 MPa and 2.46 GPa, respectively. When the cumulative strain increases to 3.48 (pass three), the strength of the CLAM steel decreases by 4.31%, whereas the microhardness and elongation increase by 2.03% and 6.27%, respectively. These trends are related to the evident dissolution of the precipitates during the deformation process.

Key words:  China low activation martensitic steel      constrained groove pressing      precipitation strengthening      mechanical property     
Received:  26 August 2020     
ZTFLH:  TG316.3  
Fund: National Natural Science Foundation of China(51875158)
About author:  LI Ping, professor, Tel: 13865927003, E-mail: li_ping@hfut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00329     OR     https://www.ams.org.cn/EN/Y2021/V57/I7/903

Fig.1  OM (a, c) and SEM (b, d) images of China low activation martensitic (CLAM) steel before (a, b) and after (c, d) heat treatment
Fig.2  TEM analyses of the precipitated phase of CLAM steel subjected to one pass constrained groove pressing at the grain boundary (a-c) and intergranular MX (d)
Fig.3  TEM images of CLAM steel before deformation (a) and after constrained groove pressing for pass one (b), pass two (c), and pass three (d) (DTs—dislocation tangles, DDWs—dense dislocation walls)
Fig.4  TEM images of precipitated phase of CLAM steel before deformation (a) and after constrained groove pressing for pass one (b), passe two (c), and pass three (d)
Fig.5  Size distributions of grains and precipitates in CLAM steel processed before and after deformation (ls—equivalent center to center distance of precipitates, f(d > 5 μm)—volume fraction of grain size greater than 5 μm, d—grain size, fv—volume fraction of precipitated phase, D—density of the precipitated phase, davg—average diameter of precipitated phase)
Fig.6  Tensile strength and elongation curves of CLAM steel with different groove pressing passes (a) and SEM image showing the fracture merphology of tensile specimen after three-passes groove pressing (b)
Fig.7  Hardness and average grain size of CLAM steel satisfy the Hall-Petch model
Fig.8  TEM image showing the pinning dislocation of MX phase
ProcessingM23C6MX
conditionσpHσpH
MPaMPaMPaMPa
As-tempered47.1141.3127381
One pass57.4172.2167501
Two passes50.6151.8249747
Three passes42.1126.3169507
Table 1  Results of precipitation strengthening
1 Tan W X. Effect of heat treatment on microstructure and mechanical properties of low activation ferrite/martensitic steels used for the fusion reactor [D]. Wuhan: Huazhong University of Science and Technology, 2011
谭文霞. 聚变堆用低活化钢的热处理改性及微观组织和性能研究 [D]. 武汉: 华中科技大学, 2011
2 Xu Y P, Lyu Y M, Zhou H S, et al. A review on the development of the structural materials of the fusion blanket [J]. Mater. Rev., 2018, 32: 2897
徐玉平, 吕一鸣, 周海山等. 核聚变堆包层结构材料研究进展及展望 [J]. 材料导报, 2018, 32: 2897
3 Tan L, Hoelzer D T, Busby J T, et al. Microstructure control for high strength 9Cr ferritic-martensitic steels [J]. J. Nucl. Mater., 2012, 422: 45
4 van der Schaaf B, Tavassoli F, Fazio C, et al. The development of EUROFER reduced activation steel [J]. Fusion Eng. Des., 2003, 69: 197
5 Klueh R L, Gelles D S, Jitsukawa S, et al. Ferritic/martensitic steels—Overview of recent results [J]. J. Nucl. Mater., 2002, 307-311: 455
6 Shankar V, Mariappan K, Sandhya R, et al. Long term creep-fatigue interaction studies on India-specific reduced activation ferritic-martensitic (IN-RAFM) steel [J]. Int. J. Fatigue, 2017, 98: 259
7 Yuan D Q, Ma H L, Fan P, et al. Synergistic effect on formation of radiation damage in CLAM steel studied by triple beam irradiation [J]. Defect Diffus. Forum, 2017, 373: 117
8 Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment [J]. Metall. Mater. Trans., 2004, 35A: 1255
9 Wang H, Yan W, van Zwaag S, et al. On the 650oC thermostability of 9-12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
10 Liu S J, Huang Q Y, Peng L, et al. Microstructure and its influence on mechanical properties of CLAM steel [J]. Fusion Eng. Des., 2012, 87: 1628
11 Zhong B Y, Huang B, Li C J, et al. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K [J]. J. Nucl. Mater., 2014, 455: 640
12 Li M S, Yang S. Effect of heat treatment on the microstructure and properties of 9Cr2WVTa reduced activation steels [A]. Energy Materials Conference Proceedings 2014 [C]. Oxford, England: Blackwell Science Publ., 2014: 551
13 Aydogan E, Chen T, Gigax J G, et al. Effect of self-ion irradiation on the microstructural changes of alloy EK-181 in annealed and severely deformed conditions [J]. J. Nucl. Mater., 2017, 487: 96
14 Lee S H, Saito Y, Tsuji N, et al. Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process [J]. Scr. Mater., 2002, 46: 281
15 Huang J Y, Zhu Y T, Alexander D J, et al. Development of repetitive corrugation and straightening [J]. Mater. Sci. Eng., 2004, A371: 35
16 Yang K H, Peng K P, Chen W Z. Microstructural evolution and grain refinement of 1060 pure Al processed by constrained groove pressing [J]. Chin. J. Nonferrous Met., 2011, 21: 3026
杨开怀, 彭开萍, 陈文哲. 限制模压变形1060纯铝的组织演化与晶粒细化 [J]. 中国有色金属学报, 2011, 21: 3026
17 Shin D H, Park J J, Kim Y S, et al. Constrained groove pressing and its application to grain refinement of aluminum [J]. Mater. Sci. Eng., 2002, A328: 98
18 Wang Z S. Experimental and numerical study on constrained groove pressing of sheet metals [D]. Jinan: Shandong University, 2014
王宗申. 金属板材限制模压变形工艺的实验与数值模拟研究 [D]. 济南: 山东大学, 2014
19 Ukai S, Mizuta S, Fujiwara M, et al. Development of 9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation [J]. J. Nucl. Sci. Technol., 2002, 39: 778
20 Wang D, Zhang J, Lou L H. Formation and stability of nano-scaled M23C6 carbide in a directionally solidified Ni-base superalloy [J]. Mater. Charact., 2009, 60: 1517
21 Shtansky D V, Nakai K, Ohmori Y. Crystallography and structural evolution during reverse transformation in an Fe-17Cr-0.5C tempered martensite [J]. Acta Mater., 2000, 48: 1679
22 Armaki H G, Chen R P, Maruyama K, et al. Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12 pct Cr ferritic steels [J]. Metall. Mater. Trans, 2011, 42A: 3084
23 Dudova N, Plotnikova A, Molodov D, et al. Structural changes of tempered martensitic 9%Cr-2%W-3%Co steel during creep at 650°C [J]. Mater. Sci. Eng., 2012, A534: 632
24 Xiao X, Liu G Q, Hu B F, et al. Coarsening behavior for M23C6 carbide in 12%Cr-reduced activation ferrite/martensite steel: Experimental study combined with DICTRA simulation [J]. J. Mater. Sci., 2013, 48: 5410
25 Hughes D A, Hansen N. High angle boundaries formed by grain subdivision mechanisms [J]. Acta Mater., 1997, 45: 3871
26 Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater., 2002, 50: 4603
27 Murayama M, Horita Z, Hono K. Microstructure of two-phase Al-1.7at% Cu alloy deformed by equal-channel angular pressing [J]. Acta Mater., 2001, 49: 21
28 Liu Z Y, Liang G X, Wang E D, et al. Effect of equal-channel angular pressing on structure of Al alloy 2024 [J]. Trans. Nonferrous Met. Soc. China, 1997, 7: 160
29 Jin X J, Chen S H, Rong L J. Microstructure modification and mechanical property improvement of reduced activation ferritic/martensitic steel by severe plastic deformation [J]. Mater. Sci. Eng., 2018, A712: 97
30 Apps P J, Bowen J R, Prangnell P B. The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing [J]. Acta Mater., 2003, 51: 2811
31 Huang W J. Severe plastic deformation induces Al-4wt.%Cu alloy precipitated phase re-dissolution and subsequent aging behavior [D]. Changsha: Central South University, 2012
黄文杰. 强塑性变形诱导Al-4wt.%Cu合金析出相回溶及之后的时效行为研究 [D]. 长沙: 中南大学, 2012
32 Xu X C, Liu Z Y, Dang P, et al. Mechanism of re-dissolution and re-precipitation of second phases in Al-Zn-Mg-Cu alloy under severe plastic deformation [J]. Mater. Sci. Technol., 2005, 13: 178
许晓嫦, 刘志义, 党 朋等. 室温强塑性变形下回溶和再析出的机理研究 [J]. 材料科学与工艺, 2005, 13: 178
33 Hu N, Xu X C, Zhang Z Z, et al. Effect of re-dissolution of severely deformed precipitated phase on mechanical properties of Al-Cu alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 1922
胡 楠, 许晓嫦, 张孜昭等. 强变形诱导析出相回溶对Al-Cu合金力学性能的影响 [J]. 中国有色金属学报, 2010, 20: 1922
34 Mao C L, Liu C X, Yu L M, et al. Mechanical properties and tensile deformation behavior of a reduced activated ferritic-martensitic (RAFM) steel at elevated temperatures [J]. Mater. Sci. Eng., 2018, A725: 283
35 Foley D C, Hartwig K T, Maloy S A, et al. Grain refinement of T91 alloy by equal channel angular pressing [J]. J. Nucl. Mater., 2009, 389: 221
36 Sasaki T T, Oh-Ishi K, Ohkubo T, et al. Effect of double aging and microalloying on the age hardening behavior of a Mg-Sn-Zn alloy [J]. Mater. Sci. Eng., 2011, A530: 1
37 Panait C G, Zielińska-Lipiec A, Koziel T, et al. Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600oC for more than 100,000 h [J]. Mater. Sci. Eng., 2010, A527: 4062
38 Hamada K, Tokuno K, Tomita Y, et al. Effects of precipitate shape on high temperature strength of modified 9Cr-1Mo steels [J]. ISIJ Int., 1995, 35: 86
39 Ravikirana, Mythili R, Raju S, et al. Influence of W and Ta content on microstructural characteristics in heat treated 9Cr-reduced activation ferritic/martensitic steels [J]. Mater. Charact., 2013, 84: 196
40 Brooks I, Lin P, Palumbo G, et al. Analysis of hardness-tensile strength relationships for electroformed nanocrystalline materials [J]. Mater. Sci. Eng., 2008, A491: 412
41 Han B Q, Mohamed F A, Lavernia E J. Mechanical properties of iron processed by severe plastic deformation [J]. Metall. Mater. Trans., 2003, 34A: 71
42 De Messemaeker J, Verlinden B, Van Humbeeck J. On the strength of boundaries in submicron IF steel [J]. Mater. Lett., 2004, 58: 3782
43 Kashyap B P, Tangri K. Hall-Petch relationship and substructural evolution in boron containing type 316L stainless steel [J]. Acta Mater., 1997, 45: 2383
44 Liu X D, Nagumo M, Umemoto M. The Hall-Petch relationship in nanocrystalline materials [J]. Mater. Trans., 1997, 38: 1033
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!