Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (7): 913-920    DOI: 10.11900/0412.1961.2020.00332
Research paper Current Issue | Archive | Adv Search |
Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel
AN Xudong1,2, ZHU Te1, WANG Qianqian1,2, SONG Yamin1, LIU Jinyang1, ZHANG Peng1, ZHANG Zhaokuan1, WAN Mingpan2(), CAO Xingzhong1()
1.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2.College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
Cite this article: 

AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel. Acta Metall Sin, 2021, 57(7): 913-920.

Download:  HTML  PDF(3052KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The formation of hydrogen-induced defects in 316 stainless steel and the interaction between hydrogen and defects are crucial aspects to understand the failure law of the hydrogen-induced mechanical properties. Introducing various types of hydrogen sinks, such as interfaces and dislocations, is a popular method for reducing the concentration of residual hydrogen and curbing the mobility of hydrogen atoms in materials. In this work, positron annihilation spectroscopy and thermal desorption spectroscopy (TDS) were used to measure the distribution of hydrogen-induced defects and hydrogen content in deformed 316 stainless steel with hydrogen charging. In particular, the influence of dislocations on the formation of hydrogen-induced defects and the hydrogen retention behavior in the specimens were experimentally investigated. The results show that the S-parameter increases upon hydrogen charging, and the W-parameter is negatively correlated with the S-parameter. The S-parameter value of the deformed sample was found to be larger than that of the annealed sample, indicating that the introduction of hydrogen results in the formation of vacancy defects in the sample. Additionally, hydrogen atoms may gather together to form a large number of volume defects near dislocations. The S-W curves show that the (S, W) point for the sample containing dislocations aggregates towards the surface after hydrogen charging, due to the hindered dislocation motion. In the deformed samples with low hydrogen charge current density, the vacancy formation rate was found to be slow, and the combination of excess hydrogen and vacancies was observed to give rise to hydrogen-vacancy clusters (HmVn), where n > m. The TDS results show that both the activation energy for hydrogen desorption and the amount of hydrogen retention increase due to the presence of dislocations.

Key words:  austenitic 316 stainless steel      dislocation      hydrogen damage      positron annihilation spectroscopy     
Received:  28 August 2020     
ZTFLH:  TG142.25  
Fund: National Key Research and Development Program of China(2019YFA0210002);Natural Science Foundation of China(11775235U1732265)
About author:  WAN Mingpan, associate professor, Tel: 18984135926, E-mail: mpwan@gzu.edu.cn.
CAO Xingzhong, professor, Tel: (010)88233393, E-mail: caoxzh@ihep.ac.cn.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00332     OR     https://www.ams.org.cn/EN/Y2021/V57/I7/913

Sample No.AnnealingElectrochemical hydrogen charging
Temperature / oCTime / hCD / (mA·cm-2)Time / h
110002Un-charged
210002508
35001Un-charged
45001508
55001204
65001504
Table 1  Annealing conditions and electrochemical hydrogen charging parameters of austenitic 316 stainless steel
Fig.1  S-E (a) and ΔS-E (b) curves of 316 stainless steel samples after hydrogen charging under different annealing conditions and hydrogen charging conditions of electrochemical cathode (S—the positron and free electron annihilation information, E—the positron incident energy, ΔS—the increment of S, ΔS2—the difference of S parameters between No.1 and No.2, ΔS4—the difference of S parameters between No.3 and No.4)
Fig.2  S-W curves of hydrogen charging of austenitic 316 stainless steel at different annealing conditions (W—the annihilation information between positrons and high-momentum electrons)
Fig.3  S-E (a) and ΔS-E (b) curves of austenitic 316 stainless steel under different hydrogen charging conditions after annealing at 500oC for 1 h (ΔS5— the difference of S parameters between No.3 and No.5, ΔS6—the difference of S parameters between No.3 and No.6)
Fig.4  W-E (a) and ΔW-E (b) curves of austenitic 316 stainless steel under different hydrogen charging conditions after annealing at 500oC for 1 h (ΔW—the increment of W, ΔW4—the difference of W parameters between No.3 and No.4, ΔW5—the difference of W parameters between No.3 and No.5, ΔW6—the difference of W parameters between No.3 and No.6)
Fig.5  XRD spectra of austenitic 316 stainless steel under different hydrogen charging conditions after annealing at 500oC for 1 h
Fig.6  S-W curves of austenite 316 stainless steel under different hydrogen charging conditions after annealing at 500oC for 1 h
Fig.7  Thermal hydrogen desorption spectra of hydrogen charged austenitic 316 stainless steel
1 Machida A, Saitoh H, Hattori T, et al. Hexagonal close-packed iron hydride behind the conventional phase diagram [J]. Sci. Rep., 2019, 9: 12290
2 Nagumo M, Nakamura M, Takai K. Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels [J]. Metall. Mater. Trans., 2001, 32A: 339
3 Song J, Curtin W A. Atomic mechanism and prediction of hydrogen embrittlement in iron [J]. Nat. Mater., 2013, 12: 145
4 Momida H, Asari Y, Nakamura Y, et al. Hydrogen-enhanced vacancy embrittlement of grain boundaries in iron [J]. Phys. Rev., 2013, 88B: 144107
5 Weber S, Martin M, Theisen W. Impact of heat treatment on the mechanical properties of AISI 304L austenitic stainless steel in high-pressure hydrogen gas [J]. J. Mater. Sci., 2012, 47: 6095
6 Ioka I, Ishijima Y, Usami K, et al. Radiation hardening and IASCC susceptibility of extra high purity austenitic stainless steel [J]. J. Nucl. Mater., 2011, 417: 887
7 Katsura R, Morisawa J, Kawano S, et al. Post-irradiation annealing effect on helium diffusivity in austenitic stainless steels [J]. J. Nucl. Mater., 2004, 329-333: 668
8 Marchi C S, Michler T, Nibur K A, et al. On the physical differences between tensile testing of type 304 and 316 austenitic stainless steels with internal hydrogen and in external hydrogen [J]. Int. J. Hydrogen Energy, 2010, 35: 9736
9 Elhoud A M, Renton N C, Deans W F. Hydrogen embrittlement of super duplex stainless steel in acid solution [J]. Int. J. Hydrogen Energy, 2010, 35: 6455
10 Liu Z B, Liang J X, Su J, et al. Research and application progress in ultra-high strength stainless steel [J]. Acta Metall. Sin., 2020, 56: 549
刘振宝, 梁剑雄, 苏 杰等. 高强度不锈钢的研究及发展现状 [J]. 金属学报, 2020, 56: 549
11 Jin S X, Cao X Z, Cheng G D, et al. Thermally promoted evolution of open-volume defects and Cu precipitates in the deformed FeCu alloys [J]. J. Nucl. Mater., 2018, 501: 293
12 Ohkubo H, Sugiyama S, Fukuzato K, et al. Positron-lifetime study of electrically hydrogen charged Ni, austenitic stainless steel and Fe [J]. J. Nucl. Mater., 2000, 283-287: 858
13 Canter K F, Mills Jr A P, Berko S. Efficient positronium formation by slow positrons incident on solid targets [J]. Phys. Rev. Lett., 1974, 33: 7
14 Nagai Y, Takadate K, Tang Z, et al. Positron annihilation study of vacancy-solute complex evolution in Fe-based alloys [J]. Phys. Rev., 2003, 67B: 224202
15 Zhang T C, Wang H T, Li Z C, et al. Positron annihilation investigation of embrittlement behavior in Chinese RPV steels after Fe-ion irradiation [J]. Acta Metall. Sin., 2018, 54: 512
张天慈, 王海涛, 李正操等. 国产RPV钢铁离子辐照脆化行为的正电子湮灭研究 [J]. 金属学报, 2018, 54: 512
16 Zhang L Z, Wang B Y, Wang D N, et al. Studies of Nb-TiAl alloy by positron annihilation techniques [J]. Acta Metall. Sin., 2007, 43: 269
张兰芝, 王宝义, 王丹妮等. 用正电子湮没技术研究Nb在TiAl合金中的掺杂效应 [J]. 金属学报, 2007, 43: 269
17 Eldrup M, Singh B N. Study of defect annealing behaviour in neutron irradiated Cu and Fe using positron annihilation and electrical conductivity [J]. J. Nucl. Mater., 2000, 276: 269
18 Deng W, Ruan X D, Huang Y Y, et al. Effects of twin size on the dislocation configuration during cyclic deformation of polycrystalline twin copper [J]. Acta Metall. Sin., 2005, 41: 33
邓 文, 阮向东, 黄宇阳等. 金属中高动量电子分布的实验研究 [J]. 金属学报, 2005, 41: 33
19 Chen Y Q, Wu Y C, Wang Z, et al. Positron annihilation study on interaction between hydrogen and defects in AISI 304 stainless steel [J]. Radiat. Phys. Chem., 2007, 76: 308
20 Würschum R, Farber P, Dittmar R, et al. Thermal vacancy formation and self-diffusion in intermetallic Fe3Si nanocrystallites of nanocomposite alloys [J]. Phys. Rev. Lett., 1997, 79: 4918
21 Wu Y C, Jean Y C. Hydrogen-induced defects of AISI 316 stainless steel studied by variable energy Doppler broadening energy spectra [J]. Phys. Status Solidi, 2004, 201A: 917
22 Zhu T, Jin S X, Gong Y H, et al. The influence of dislocation and hydrogen on thermal helium desorption behavior in Fe9Cr alloys [J]. J. Nucl. Mater., 2017, 495: 244
23 Zhu T, Cao X Z, Jin S X, et al. Helium retention and thermal desorption from defects in Fe9Cr binary alloys [J]. J. Nucl. Mater., 2015, 466: 522
24 Cao X Z, Xu Q, Sato K, et al. Thermal desorption of helium from defects in nickel [J]. J. Nucl. Mater., 2011, 412: 165
25 Munakata K, Shinozaki T, Inoue K, et al. Tritium release from lithium silicate pebbles produced from lithium hydroxide [J]. Fusion Eng. Des., 2008, 83: 1317
26 Gilbert E R, Garner F A. The influence of cold-work level on the irradiation creep and swelling of AISI 316 stainless steel irradiated as pressurized tubes in the EBR-II fast reactor [J]. J. Nucl. Mater., 2006, 367-370: 954
27 Zhang C X, Cao X Z, Li Y H, et al. Thermal evolution of vacancy-type defects in quenched FeCrNi alloys [J]. Appl. Phys., 2015, 119A: 1431
28 Gong Y H, Jin S X, Zhu T, et al. Helium self-trapping and diffusion behaviors in deformed 316L stainless steel exposed to high flux and low energy helium plasma [J]. Nucl. Fusion, 2018, 58: 046011
29 Koch T, Heinig K H, Jentschel M, et al. Study of interatomic potentials in ZnS—Crystal-GRID experiments versus ab initio calculations [J]. J. Res. Natl. Inst. Stand. Technol., 2000, 105: 81
30 Jin S X, Zhang P, Lu E Y, et al. Correlation between Cu precipitates and irradiation defects in Fe-Cu model alloys investigated by positron annihilation spectroscopy [J]. Acta Mater., 2016, 103: 658
31 Cao X Z, Song L G, Jin S X, et al. Advances in applications of positron annihilation spectroscopy to investigating semiconductor microstructures [J]. Acta Phys. Sin., 2017, 66: 027801
32 Hu Y C, Cao X Z, Li Y X, et al. Applications and progress of slow positron beam technique in the study of metal/alloy microdefects [J]. Acta Phy. Sin., 2015, 64: 247804
胡远超, 曹兴忠, 李玉晓等. 慢正电子束流技术在金属/合金微观缺陷研究中的应用 [J]. 物理学报, 2015, 64: 247804
33 Zhu T, Jin S X, Guo L P, et al. Helium/hydrogen synergistic effect in reduced activation ferritic/martensitic steel investigated by slow positron beam [J]. Philos. Mag., 2016, 96: 253
34 Cao X Z, Zhang P, Xu Q, et al. Cu precipitates in Fe ion irradiated Fe-Cu alloys studied using positron techniques [J]. J. Phys.: Conf. Ser., 2013, 443: 012017
35 Xin Y, Ju X, Qiu J, et al. Vacancy-type defects and hardness of helium implanted CLAM steel studied by positron-annihilation spectroscopy and nano-indentation technique[J]. Fusion Eng. Des., 2012, 87: 432
36 Jena P, Ponnambalam M J, Manninen M. Positron annihilation in metal-vacancy-hydrogen complexes [J]. Phys. Rev., 1981, 24B: 2884
37 Zhang S S, Cizek J, Yao Z J, et al. Self healing of radiation-induced damage in Fe-Au and Fe-Cu alloys: Combining positron annihilation spectroscopy with TEM and ab initio calculations [J]. J. Alloys Compd., 2020, 817: 152765
38 Duportal M, Oudriss A, Feaugas X, et al. On the estimation of the diffusion coefficient and distribution of hydrogen in stainless steel [J]. Scr. Mater., 2020, 186: 282
39 Ishizaki T, Xu Q, Yoshiie T, et al. The Recovery of gas-vacancy-complexes in Fe irradiated with high energy H or He ions [J]. Mater. Trans., 2004, 45: 9
40 Cao X Z, Zhu T, Jin S X, et al. Detection of helium in irradiated Fe9Cr alloys by coincidence Doppler broadening of slow positron annihilation [J]. Appl. Phys., 2017, 123A: 177
41 Wang K, Deng A H, Gong M, et al. Effect on microstructure of tungsten under helium ions irradiation with multiple energy [J]. Acta Metall. Sin., 2017, 53: 70
王 康, 邓爱红, 龚 敏等. 多能氦离子注入对W金属微结构的影响[J]. 金属学报, 2017, 53: 70
42 Sato K, Ikemura K, Krsjak V, et al. Defect structures of F82H irradiated at SINQ using positron annihilation spectroscopy [J]. J. Nucl. Mater., 2016: 468: 281
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[8] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[9] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[10] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[11] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[12] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[13] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[14] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[15] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
No Suggested Reading articles found!