Please wait a minute...
金属学报  2023, Vol. 59 Issue (4): 577-584    DOI: 10.11900/0412.1961.2022.00553
  研究论文 本期目录 | 过刊浏览 |
CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响
许林杰1,2, 刘徽1, 任玲1, 杨柯1()
1中国科学院金属研究所 沈阳 110016
2中国科学技术大学 材料科学与工程学院 沈阳 110016
Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy
XU Linjie1,2, LIU Hui1, REN Ling1, YANG Ke1()
1Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
Linjie XU, Hui LIU, Ling REN, Ke YANG. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. Acta Metall Sin, 2023, 59(4): 577-584.

全文: PDF(1719 KB)   HTML
摘要: 

基于合金化策略,通过向医用Ni-Ti合金中添加适量Cu制备生物功能化Ni-Ti-Cu合金,并利用OM、SEM、XRD、表面自由能测试、电化学实验以及体外细胞实验等方法,探究Ni-Ti-Cu合金抑制支架内再狭窄作用以及耐蚀性能。结果表明,与Ni-Ti合金相比,Ni-Ti-Cu合金由等轴奥氏体组织向细板条马氏体组织转变,其表面自由能显著降低,在模拟人体血液中的耐蚀性能提高。此外,Ni-Ti-Cu合金浸提液还可显著促进人脐静脉内皮细胞的增殖、迁移及成血管能力。与Ni-Ti合金相比,Ni-Ti-Cu合金可降低血液凝固速率,表现出更优异的抗凝血性能,具有抑制支架内再狭窄发生的应用潜力。

关键词 Ni-Ti合金Cu支架内再狭窄耐蚀性能    
Abstract

Ni-Ti alloys are used widely as a self-expanding vascular stent material because of their unique shape memory effect and superelasticity. However, after implantation, there is a risk of in-stent restenosis (ISR) because of insufficient endothelialization and coagulation problems. As a biological functional metal element, the proper addition of Cu endows vascular stent materials, such as stainless steel and cobalt-based alloys, with significant endothelialization promotion and anticoagulant effect, which can effectively inhibit the occurrence of ISR. Based on the alloying strategy, a biofunctional Ni-Ti-Cu alloy was prepared by adding the proper amount of Cu into medical Ni-Ti alloys. The inhibition effect of ISR and corrosion resistance of the Ni-Ti-Cu alloy were studied via OM, SEM, XRD, surface free energy test, electrochemical test, and in vitro cell experiment. Results showed that compared with the Ni-Ti alloy, the Ni-Ti-Cu alloy promoted the transformation of an equiaxed austenite grain structure to fine lath martensite, reduced the surface free energy, and improved corrosion resistance in simulated human blood. In addition, the extract of the Ni-Ti-Cu alloy could promote the proliferation, migration, and tube formation of human umbilical vein endothelial cells. Furthermore, compared with the Ni-Ti alloy, the Ni-Ti-Cu alloy decreased the blood coagulation rate, presenting better anticoagulation ability, which has an application potential for inhibiting the occurrence of ISR.

Key wordsNi-Ti alloy    Cu    in-stent restenosis    corrosion resistance
收稿日期: 2022-10-31     
ZTFLH:  TG146.23  
基金资助:国家重点研发计划项目(2022YFC2406003);国家自然科学基金项目(81873918);国家自然科学基金项目(82272099);辽宁省自然科学基金计划项目(2021020399-JH2/103);辽宁省自然科学基金计划项目(2022-YGJC-34)
通讯作者: 杨柯,kyang@imr.ac.cn,主要从事新型医用金属材料研发及应用研究、先进钢铁材料研究以及储氢合金研究
Corresponding author: YANG Ke, professor, Tel: (024)23971628, E-mail: kyang@imr.ac.cn
作者简介: 许林杰,男,1999年生,硕士生
图1  Ni-Ti和Ni-Ti-Cu合金的XRD谱与SEM像
Alloyθ1 / (°)θ2 / (°)θ3 / (°)γsvp / (mJ·m-2)γsvd / (mJ·m-2)
Ni-Ti53.44 ± 1.9455.53 ± 3.2718.59 ± 0.3711.94 ± 1.3139.31 ± 0.83
Ni-Ti-Cu58.36 ± 3.6065.73 ± 3.5819.12 ± 0.888.99 ± 1.1237.56 ± 1.08
表1  不同样品与去离子水、甘油和溴代萘的接触角及表面自由能测量结果
图2  Ni-Ti和Ni-Ti-Cu合金的电化学测试结果
AlloyEcorr / mVicorr / (nA·cm-2)Epit / mVRs / (Ω·cm2)Rc1 / (104 Ω·cm2)Qc1 / (μΩ-1·s n ·cm-2)
Ni-Ti-399 ± 6299.7 ± 13.4828 ± 3013.73 ± 1.646.41 ± 1.2052.3 ± 1.5
Ni-Ti-Cu-283 ± 5259.5 ± 16.3862 ± 2511.79 ± 1.2267.32 ± 3.4251.5 ± 1.2
表2  从动电位极化曲线与EIS图中获得的电化学参数
图3  Ni-Ti和Ni-Ti-Cu合金的体外细胞实验结果
图4  Ni-Ti和Ni-Ti-Cu合金的动态凝血实验结果
1 Hoh D J, Hoh B L, Amar A P, et al. Shape memory alloys: Metallurgy, biocompatibility, and biomechanics for neurosurgical applications [J]. Neurosurgery, 2009, 64: 199
doi: 10.1227/01.NEU.0000330392.09889.99 pmid: 19404101
2 Robertson S W, Pelton A R, Ritchie R O. Mechanical fatigue and fracture of Nitinol [J]. Int. Mater. Rev., 2012, 57: 1
doi: 10.1179/1743280411Y.0000000009
3 Cockerill I, See C W, Young M L, et al. Designing better cardiovascular stent materials: A learning curve [J]. Adv. Funct. Mater., 2021, 31: 2005361
doi: 10.1002/adfm.v31.1
4 Antherieu G, Connesson N, Payan Y, et al. NiTi based stent for the treatment of acute urinary retention due to benign prostatic hyperplasia: A preliminary study on NiTi wires and tubes under pure bending [J]. Comput. Methods Biomech. Biomed. Eng., 2014, 17: 190
doi: 10.1080/10255842.2014.931679
5 Tomita M, Saito S, Makimoto S, et al. Self-expandable metallic stenting as a bridge to surgery for malignant colorectal obstruction: Pooled analysis of 426 patients from two prospective multicenter series [J]. Surg. Endosc., 2019, 33: 499
doi: 10.1007/s00464-018-6324-8 pmid: 30006840
6 Maleckis K, Anttila E, Aylward P, et al. Nitinol stents in the femoropopliteal artery: A mechanical perspective on material, design, and performance [J]. Ann. Biomed. Eng., 2018, 46: 684
doi: 10.1007/s10439-018-1990-1 pmid: 29470746
7 Zhang Y, Wang X Y, Ma Z L, et al. A potential strategy for in-stent restenosis: Inhibition of migration and proliferation of vascular smooth muscle cells by Cu ion [J]. Mater. Sci. Eng., 2020, C115: 111090
8 Ahmed R A. Electrochemical properties of Ni47Ti49Co4 shape memory alloy in artificial urine for urological implant [J]. Ind. Eng. Chem. Res., 2015, 54: 8397
doi: 10.1021/acs.iecr.5b00838
9 Shen Y, Wang G X, Chen L, et al. Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy: Effects of surface micropatterning combined with plasma nanocoatings [J]. Acta Biomater., 2009, 5: 3593
doi: 10.1016/j.actbio.2009.05.021 pmid: 19477302
10 Boodagh P, Guo D J, Nagiah N, et al. Evaluation of electrospun PLLA/PEGDMA polymer coatings for vascular stent material [J]. J. Biomater. Sci. Polym. Ed., 2016, 27: 1086
doi: 10.1080/09205063.2016.1176715 pmid: 27137629
11 Lih E, Jung J W, Joung Y K, et al. Synergistic effect of anti-platelet and anti-inflammation of drug-coated Co-Cr substrates for prevention of initial in-stent restenosis [J]. Colloids Surf., 2016, 140B: 353
12 Yang D Y, Lu X Y, Hong Y, et al. The molecular mechanism for effects of TiN coating on NiTi alloy on endothelial cell function [J]. Biomaterials, 2014, 35: 6195
doi: 10.1016/j.biomaterials.2014.04.069 pmid: 24818882
13 Zhao Y, Wang Z, Bai L, et al. Regulation of endothelial functionality through direct and immunomodulatory effects by Ni-Ti-O nanospindles on NiTi alloy [J]. Mater. Sci. Eng., 2021, C123: 112007
14 Kim H J, Moon M W, Lee K R, et al. Mechanical stability of the diamond-like carbon film on nitinol vascular stents under cyclic loading [J]. Thin Solid Films, 2008, 517: 1146
doi: 10.1016/j.tsf.2008.08.175
15 Yelkarasi C, Recek N, Kazmanli K, et al. Biocompatibility and mechanical stability of nanopatterned titanium films on stainless steel vascular stents [J]. Int. J. Mol. Sci., 2022, 23: 4595
doi: 10.3390/ijms23094595
16 Ren L, Xu L, Feng J W, et al. In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis [J]. J. Mater. Sci.: Mater. Med., 2012, 23: 1235
doi: 10.1007/s10856-012-4584-8
17 Jin S J, Qi X, Wang T M, et al. In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy [J]. J. Biomed. Mater. Res., 2018, 106A: 561
18 Gil F J, Planell J A. Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications [J]. J. Biomed. Mater. Res., 1999, 48: 682
doi: 10.1002/(ISSN)1097-4636
19 Gil F J, Solano E, Peña J, et al. Microstructural, mechanical and citotoxicity evaluation of different NiTi and NiTiCu shape memory alloys [J]. J. Mater. Sci.: Mater. Med., 2004, 15: 1181
doi: 10.1007/s10856-004-5953-8
20 Phukaoluan A, Khantachawana A, Kaewtatip P, et al. Property improvement of TiNi by Cu addition for orthodontics applications [J]. Appl. Mech. Mater., 2011, 87: 95
doi: 10.4028/www.scientific.net/AMM.87
21 Colombo S, Cannizzo C, Gariboldi F, et al. Electrical resistance and deformation during the stress-assisted two-way memory effect in Ni45Ti50Cu5 alloy [J]. J. Alloys Compd., 2006, 422: 313
doi: 10.1016/j.jallcom.2005.12.016
22 Sakuma T, Hosogi M, Okabe N, et al. Effect of copper content on superelasticity characteristics in Ti-Ni and Ti-Ni-Cu alloy wires [J]. Mater. Trans., 2002, 43: 828
doi: 10.2320/matertrans.43.828
23 Vokoun D, Šittner P, Stalmans R. Study of the effect of curing treatment in fabrication of SMA/polymer composites on deformational behavior of NiTi-5at.%Cu SMA wires [J]. Scr. Mater., 2003, 48: 623
doi: 10.1016/S1359-6462(02)00463-3
24 Li H F, Qiu K J, Zhou F Y, et al. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application [J]. Sci. Rep., 2016, 6: 37475
doi: 10.1038/srep37475 pmid: 27897182
25 Pun D K, Berzins D W. Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures [J]. Dent. Mater., 2008, 24: 221
pmid: 17624421
26 Cheng F T, Lo K H, Man H C. An electrochemical study of the crevice corrosion resistance of NiTi in Hanks' solution [J]. J. Alloys Compd., 2007, 437: 322
doi: 10.1016/j.jallcom.2006.07.127
27 Kassab E, Neelakantan L, Frotscher M, et al. Effect of ternary element addition on the corrosion behaviour of NiTi shape memory alloys [J]. Mater. Corros., 2014, 65: 18
28 Dos Reis Barros C D, Da Cunha Ponciano Gomes J A. Influence of Cu addition and autoclave sterilization on corrosion resistance and biocompatibility of NiTi for orthodontics applications [J]. Mater. Res., 2021, 24: 20200369
29 Rondelli G, Vicentini B. Effect of copper on the localized corrosion resistance of Ni-Ti shape memory alloy [J]. Biomaterials, 2002, 23: 639
pmid: 11771683
30 Craciunescu C, Hamdy A S. The effect of copper alloying element on the corrosion characteristics of Ti-Ni and ternary Ni-Ti-Cu meltspun shape memory alloy ribbons in 0.9% NaCl solution [J]. Int. J. Electrochem. Sci., 2013, 8: 10320
31 Zhang X Y, Zhao Y H, Gao W W, et al. Study of TiCuN/ZrN multilayer coatings with adjustable combination properties deposited on TiCu alloy [J]. Vacuum, 2022, 202: 111202
doi: 10.1016/j.vacuum.2022.111202
32 Toker S M, Canadinc D, Maier H J, et al. Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys: Geometry and body location dependency [J]. Mater. Sci. Eng., 2014, C36: 118
33 Zhao J. Study on biological functions of Cu-bearing stainless steel for urethral system [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017
33 赵 静. 含铜不锈钢在泌尿系统中的生物医学功能研究 [D]. 沈阳: 中国科学院金属研究所, 2017
34 Yang H J, Yang K, Zhang B C. Study of in vitro anticoagulant property of the La added medical 316L stainless steel [J]. Acta Metall. Sin., 2006, 42: 959
34 杨化娟, 杨 柯, 张炳春. 含La医用316L不锈钢的体外抗凝血性能研究 [J]. 金属学报, 2006, 42: 959
35 Yu X X, Hong Z, Jiang H W, et al. Surface wettability of water and blood on diversified nanocone‐shaped ZnO films modified with n‐dodecyl mercaptan [J]. Surf. Interface Anal., 2022, 54: 1211
doi: 10.1002/sia.v54.12
36 Qiu P, Gao P P, Wang S Y, et al. Study on corrosion behavior of the selective laser melted NiTi alloy with superior tensile property and shape memory effect [J]. Corros. Sci., 2020, 175: 108891
doi: 10.1016/j.corsci.2020.108891
37 Briceño J, Romeu A, Espinar E, et al. Influence of the microstructure on electrochemical corrosion and nickel release in NiTi orthodontic archwires [J]. Mater. Sci. Eng., 2013, C33: 4989
38 Marattukalam J J, Singh A K, Datta S, et al. Microstructure and corrosion behavior of laser processed NiTi alloy [J]. Mater. Sci. Eng., 2015, C57: 309
39 Liu H, Zhang X Y, Jin S J, et al. Effect of copper-doped titanium nitride coating on angiogenesis [J]. Mater. Lett., 2020, 269: 127634
doi: 10.1016/j.matlet.2020.127634
40 Jin S J, Qi X, Zhang B, et al. Evaluation of promoting effect of a novel Cu-bearing metal stent on endothelialization process from in vitro and in vivo studies [J]. Sci. Rep., 2017, 7: 17394
doi: 10.1038/s41598-017-17737-9 pmid: 29234061
41 Hong Z, Yu X X, Jiang H W, et al. Influence of surface morphology and surface free energy on the anticoagulant properties of nanocone‐shaped ZnO films [J]. J. Appl. Polym. Sci., 2022, 139: 52005
doi: 10.1002/app.v139.17
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[3] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[4] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[5] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[6] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[7] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[8] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[9] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[10] 朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.
[11] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[12] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[13] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[14] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.
[15] 侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰. 突破强度-导电率制约关系:晶粒异构设计[J]. 金属学报, 2022, 58(11): 1467-1477.