|
|
Cu对Ni-Ti合金抗支架内再狭窄与耐蚀性能的影响 |
许林杰1,2, 刘徽1, 任玲1, 杨柯1( ) |
1中国科学院金属研究所 沈阳 110016 2中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy |
XU Linjie1,2, LIU Hui1, REN Ling1, YANG Ke1( ) |
1Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
许林杰, 刘徽, 任玲, 杨柯. Cu对Ni-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
Linjie XU,
Hui LIU,
Ling REN,
Ke YANG.
Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. Acta Metall Sin, 2023, 59(4): 577-584.
1 |
Hoh D J, Hoh B L, Amar A P, et al. Shape memory alloys: Metallurgy, biocompatibility, and biomechanics for neurosurgical applications [J]. Neurosurgery, 2009, 64: 199
doi: 10.1227/01.NEU.0000330392.09889.99
pmid: 19404101
|
2 |
Robertson S W, Pelton A R, Ritchie R O. Mechanical fatigue and fracture of Nitinol [J]. Int. Mater. Rev., 2012, 57: 1
doi: 10.1179/1743280411Y.0000000009
|
3 |
Cockerill I, See C W, Young M L, et al. Designing better cardiovascular stent materials: A learning curve [J]. Adv. Funct. Mater., 2021, 31: 2005361
doi: 10.1002/adfm.v31.1
|
4 |
Antherieu G, Connesson N, Payan Y, et al. NiTi based stent for the treatment of acute urinary retention due to benign prostatic hyperplasia: A preliminary study on NiTi wires and tubes under pure bending [J]. Comput. Methods Biomech. Biomed. Eng., 2014, 17: 190
doi: 10.1080/10255842.2014.931679
|
5 |
Tomita M, Saito S, Makimoto S, et al. Self-expandable metallic stenting as a bridge to surgery for malignant colorectal obstruction: Pooled analysis of 426 patients from two prospective multicenter series [J]. Surg. Endosc., 2019, 33: 499
doi: 10.1007/s00464-018-6324-8
pmid: 30006840
|
6 |
Maleckis K, Anttila E, Aylward P, et al. Nitinol stents in the femoropopliteal artery: A mechanical perspective on material, design, and performance [J]. Ann. Biomed. Eng., 2018, 46: 684
doi: 10.1007/s10439-018-1990-1
pmid: 29470746
|
7 |
Zhang Y, Wang X Y, Ma Z L, et al. A potential strategy for in-stent restenosis: Inhibition of migration and proliferation of vascular smooth muscle cells by Cu ion [J]. Mater. Sci. Eng., 2020, C115: 111090
|
8 |
Ahmed R A. Electrochemical properties of Ni47Ti49Co4 shape memory alloy in artificial urine for urological implant [J]. Ind. Eng. Chem. Res., 2015, 54: 8397
doi: 10.1021/acs.iecr.5b00838
|
9 |
Shen Y, Wang G X, Chen L, et al. Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy: Effects of surface micropatterning combined with plasma nanocoatings [J]. Acta Biomater., 2009, 5: 3593
doi: 10.1016/j.actbio.2009.05.021
pmid: 19477302
|
10 |
Boodagh P, Guo D J, Nagiah N, et al. Evaluation of electrospun PLLA/PEGDMA polymer coatings for vascular stent material [J]. J. Biomater. Sci. Polym. Ed., 2016, 27: 1086
doi: 10.1080/09205063.2016.1176715
pmid: 27137629
|
11 |
Lih E, Jung J W, Joung Y K, et al. Synergistic effect of anti-platelet and anti-inflammation of drug-coated Co-Cr substrates for prevention of initial in-stent restenosis [J]. Colloids Surf., 2016, 140B: 353
|
12 |
Yang D Y, Lu X Y, Hong Y, et al. The molecular mechanism for effects of TiN coating on NiTi alloy on endothelial cell function [J]. Biomaterials, 2014, 35: 6195
doi: 10.1016/j.biomaterials.2014.04.069
pmid: 24818882
|
13 |
Zhao Y, Wang Z, Bai L, et al. Regulation of endothelial functionality through direct and immunomodulatory effects by Ni-Ti-O nanospindles on NiTi alloy [J]. Mater. Sci. Eng., 2021, C123: 112007
|
14 |
Kim H J, Moon M W, Lee K R, et al. Mechanical stability of the diamond-like carbon film on nitinol vascular stents under cyclic loading [J]. Thin Solid Films, 2008, 517: 1146
doi: 10.1016/j.tsf.2008.08.175
|
15 |
Yelkarasi C, Recek N, Kazmanli K, et al. Biocompatibility and mechanical stability of nanopatterned titanium films on stainless steel vascular stents [J]. Int. J. Mol. Sci., 2022, 23: 4595
doi: 10.3390/ijms23094595
|
16 |
Ren L, Xu L, Feng J W, et al. In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis [J]. J. Mater. Sci.: Mater. Med., 2012, 23: 1235
doi: 10.1007/s10856-012-4584-8
|
17 |
Jin S J, Qi X, Wang T M, et al. In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy [J]. J. Biomed. Mater. Res., 2018, 106A: 561
|
18 |
Gil F J, Planell J A. Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications [J]. J. Biomed. Mater. Res., 1999, 48: 682
doi: 10.1002/(ISSN)1097-4636
|
19 |
Gil F J, Solano E, Peña J, et al. Microstructural, mechanical and citotoxicity evaluation of different NiTi and NiTiCu shape memory alloys [J]. J. Mater. Sci.: Mater. Med., 2004, 15: 1181
doi: 10.1007/s10856-004-5953-8
|
20 |
Phukaoluan A, Khantachawana A, Kaewtatip P, et al. Property improvement of TiNi by Cu addition for orthodontics applications [J]. Appl. Mech. Mater., 2011, 87: 95
doi: 10.4028/www.scientific.net/AMM.87
|
21 |
Colombo S, Cannizzo C, Gariboldi F, et al. Electrical resistance and deformation during the stress-assisted two-way memory effect in Ni45Ti50Cu5 alloy [J]. J. Alloys Compd., 2006, 422: 313
doi: 10.1016/j.jallcom.2005.12.016
|
22 |
Sakuma T, Hosogi M, Okabe N, et al. Effect of copper content on superelasticity characteristics in Ti-Ni and Ti-Ni-Cu alloy wires [J]. Mater. Trans., 2002, 43: 828
doi: 10.2320/matertrans.43.828
|
23 |
Vokoun D, Šittner P, Stalmans R. Study of the effect of curing treatment in fabrication of SMA/polymer composites on deformational behavior of NiTi-5at.%Cu SMA wires [J]. Scr. Mater., 2003, 48: 623
doi: 10.1016/S1359-6462(02)00463-3
|
24 |
Li H F, Qiu K J, Zhou F Y, et al. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application [J]. Sci. Rep., 2016, 6: 37475
doi: 10.1038/srep37475
pmid: 27897182
|
25 |
Pun D K, Berzins D W. Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures [J]. Dent. Mater., 2008, 24: 221
pmid: 17624421
|
26 |
Cheng F T, Lo K H, Man H C. An electrochemical study of the crevice corrosion resistance of NiTi in Hanks' solution [J]. J. Alloys Compd., 2007, 437: 322
doi: 10.1016/j.jallcom.2006.07.127
|
27 |
Kassab E, Neelakantan L, Frotscher M, et al. Effect of ternary element addition on the corrosion behaviour of NiTi shape memory alloys [J]. Mater. Corros., 2014, 65: 18
|
28 |
Dos Reis Barros C D, Da Cunha Ponciano Gomes J A. Influence of Cu addition and autoclave sterilization on corrosion resistance and biocompatibility of NiTi for orthodontics applications [J]. Mater. Res., 2021, 24: 20200369
|
29 |
Rondelli G, Vicentini B. Effect of copper on the localized corrosion resistance of Ni-Ti shape memory alloy [J]. Biomaterials, 2002, 23: 639
pmid: 11771683
|
30 |
Craciunescu C, Hamdy A S. The effect of copper alloying element on the corrosion characteristics of Ti-Ni and ternary Ni-Ti-Cu meltspun shape memory alloy ribbons in 0.9% NaCl solution [J]. Int. J. Electrochem. Sci., 2013, 8: 10320
|
31 |
Zhang X Y, Zhao Y H, Gao W W, et al. Study of TiCuN/ZrN multilayer coatings with adjustable combination properties deposited on TiCu alloy [J]. Vacuum, 2022, 202: 111202
doi: 10.1016/j.vacuum.2022.111202
|
32 |
Toker S M, Canadinc D, Maier H J, et al. Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys: Geometry and body location dependency [J]. Mater. Sci. Eng., 2014, C36: 118
|
33 |
Zhao J. Study on biological functions of Cu-bearing stainless steel for urethral system [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017
|
33 |
赵 静. 含铜不锈钢在泌尿系统中的生物医学功能研究 [D]. 沈阳: 中国科学院金属研究所, 2017
|
34 |
Yang H J, Yang K, Zhang B C. Study of in vitro anticoagulant property of the La added medical 316L stainless steel [J]. Acta Metall. Sin., 2006, 42: 959
|
34 |
杨化娟, 杨 柯, 张炳春. 含La医用316L不锈钢的体外抗凝血性能研究 [J]. 金属学报, 2006, 42: 959
|
35 |
Yu X X, Hong Z, Jiang H W, et al. Surface wettability of water and blood on diversified nanocone‐shaped ZnO films modified with n‐dodecyl mercaptan [J]. Surf. Interface Anal., 2022, 54: 1211
doi: 10.1002/sia.v54.12
|
36 |
Qiu P, Gao P P, Wang S Y, et al. Study on corrosion behavior of the selective laser melted NiTi alloy with superior tensile property and shape memory effect [J]. Corros. Sci., 2020, 175: 108891
doi: 10.1016/j.corsci.2020.108891
|
37 |
Briceño J, Romeu A, Espinar E, et al. Influence of the microstructure on electrochemical corrosion and nickel release in NiTi orthodontic archwires [J]. Mater. Sci. Eng., 2013, C33: 4989
|
38 |
Marattukalam J J, Singh A K, Datta S, et al. Microstructure and corrosion behavior of laser processed NiTi alloy [J]. Mater. Sci. Eng., 2015, C57: 309
|
39 |
Liu H, Zhang X Y, Jin S J, et al. Effect of copper-doped titanium nitride coating on angiogenesis [J]. Mater. Lett., 2020, 269: 127634
doi: 10.1016/j.matlet.2020.127634
|
40 |
Jin S J, Qi X, Zhang B, et al. Evaluation of promoting effect of a novel Cu-bearing metal stent on endothelialization process from in vitro and in vivo studies [J]. Sci. Rep., 2017, 7: 17394
doi: 10.1038/s41598-017-17737-9
pmid: 29234061
|
41 |
Hong Z, Yu X X, Jiang H W, et al. Influence of surface morphology and surface free energy on the anticoagulant properties of nanocone‐shaped ZnO films [J]. J. Appl. Polym. Sci., 2022, 139: 52005
doi: 10.1002/app.v139.17
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|