Please wait a minute...
金属学报  2021, Vol. 57 Issue (7): 913-920    DOI: 10.11900/0412.1961.2020.00332
  研究论文 本期目录 | 过刊浏览 |
奥氏体316不锈钢中位错与氢的相互作用机理
安旭东1,2, 朱特1, 王茜茜1,2, 宋亚敏1, 刘进洋1, 张鹏1, 张钊宽1, 万明攀2(), 曹兴忠1()
1.中国科学院高能物理研究所 北京 100049
2.贵州大学 材料与冶金学院 贵阳 550025
Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel
AN Xudong1,2, ZHU Te1, WANG Qianqian1,2, SONG Yamin1, LIU Jinyang1, ZHANG Peng1, ZHANG Zhaokuan1, WAN Mingpan2(), CAO Xingzhong1()
1.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2.College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
引用本文:

安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
Xudong AN, Te ZHU, Qianqian WANG, Yamin SONG, Jinyang LIU, Peng ZHANG, Zhaokuan ZHANG, Mingpan WAN, Xingzhong CAO. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. Acta Metall Sin, 2021, 57(7): 913-920.

全文: PDF(3052 KB)   HTML
摘要: 

对冷变形引入位错缺陷的奥氏体316不锈钢进行电化学充氢实验,采用正电子湮没谱学和热脱附谱仪对样品的氢致缺陷和充氢含量进行实验分析,研究位错对氢致缺陷的形成及氢在材料中滞留行为的作用。结果表明,充氢后正电子湮没Doppler展宽能谱的S参数增大,形变样品的S参数变化更为明显,表明形变样品充氢后形成了大量的空位型缺陷,而且H原子有可能在位错附近聚集形成大量开体积缺陷。S-W曲线显示充氢后正电子湮没参数向近表面移动,反映了样品中位错缺陷对H原子扩散行为的抑制作用,分析表明,充氢过程中氢与空位(V)结合形成HmVn(n > m)复合体的过程优先于空位缺陷的形成过程。热脱附谱结果显示,氢从位错中的脱附激活能增加,位错的存在使氢的滞留量增加。

关键词 奥氏体316不锈钢位错氢致缺陷正电子湮没谱学    
Abstract

The formation of hydrogen-induced defects in 316 stainless steel and the interaction between hydrogen and defects are crucial aspects to understand the failure law of the hydrogen-induced mechanical properties. Introducing various types of hydrogen sinks, such as interfaces and dislocations, is a popular method for reducing the concentration of residual hydrogen and curbing the mobility of hydrogen atoms in materials. In this work, positron annihilation spectroscopy and thermal desorption spectroscopy (TDS) were used to measure the distribution of hydrogen-induced defects and hydrogen content in deformed 316 stainless steel with hydrogen charging. In particular, the influence of dislocations on the formation of hydrogen-induced defects and the hydrogen retention behavior in the specimens were experimentally investigated. The results show that the S-parameter increases upon hydrogen charging, and the W-parameter is negatively correlated with the S-parameter. The S-parameter value of the deformed sample was found to be larger than that of the annealed sample, indicating that the introduction of hydrogen results in the formation of vacancy defects in the sample. Additionally, hydrogen atoms may gather together to form a large number of volume defects near dislocations. The S-W curves show that the (S, W) point for the sample containing dislocations aggregates towards the surface after hydrogen charging, due to the hindered dislocation motion. In the deformed samples with low hydrogen charge current density, the vacancy formation rate was found to be slow, and the combination of excess hydrogen and vacancies was observed to give rise to hydrogen-vacancy clusters (HmVn), where n > m. The TDS results show that both the activation energy for hydrogen desorption and the amount of hydrogen retention increase due to the presence of dislocations.

Key wordsaustenitic 316 stainless steel    dislocation    hydrogen damage    positron annihilation spectroscopy
收稿日期: 2020-08-28     
ZTFLH:  TG142.25  
基金资助:国家重点研发计划项目(2019YFA0210002);国家自然科学基金项目(11775235、U1732265)
作者简介: 安旭东,男,1994年生,硕士生
Sample No.AnnealingElectrochemical hydrogen charging
Temperature / oCTime / hCD / (mA·cm-2)Time / h
110002Un-charged
210002508
35001Un-charged
45001508
55001204
65001504
表1  奥氏体316不锈钢退火条件和电化学充氢参数
图1  不同退火条件316不锈钢样品电化学充氢前后S参数和ΔS与正电子入射能量(E)的关系曲线
图2  不同退火条件下奥氏体316不锈钢电化学充氢的S-W曲线
图3  500℃退火1 h样品在不同充氢条件下的S参数和ΔS与正电子入射能量的关系曲线
图4  500℃退火1 h样品在不同充氢条件下的W参数和ΔW参数与正电子入射能量的关系曲线
图5  500℃退火1 h样品在不同充氢条件下的XRD谱
图6  500℃退火1 h后在不同充氢条件下奥氏体316不锈钢的S-W曲线
图7  奥氏体316不锈钢电化学充氢样品的热氢脱附谱
1 Machida A, Saitoh H, Hattori T, et al. Hexagonal close-packed iron hydride behind the conventional phase diagram [J]. Sci. Rep., 2019, 9: 12290
2 Nagumo M, Nakamura M, Takai K. Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels [J]. Metall. Mater. Trans., 2001, 32A: 339
3 Song J, Curtin W A. Atomic mechanism and prediction of hydrogen embrittlement in iron [J]. Nat. Mater., 2013, 12: 145
4 Momida H, Asari Y, Nakamura Y, et al. Hydrogen-enhanced vacancy embrittlement of grain boundaries in iron [J]. Phys. Rev., 2013, 88B: 144107
5 Weber S, Martin M, Theisen W. Impact of heat treatment on the mechanical properties of AISI 304L austenitic stainless steel in high-pressure hydrogen gas [J]. J. Mater. Sci., 2012, 47: 6095
6 Ioka I, Ishijima Y, Usami K, et al. Radiation hardening and IASCC susceptibility of extra high purity austenitic stainless steel [J]. J. Nucl. Mater., 2011, 417: 887
7 Katsura R, Morisawa J, Kawano S, et al. Post-irradiation annealing effect on helium diffusivity in austenitic stainless steels [J]. J. Nucl. Mater., 2004, 329-333: 668
8 Marchi C S, Michler T, Nibur K A, et al. On the physical differences between tensile testing of type 304 and 316 austenitic stainless steels with internal hydrogen and in external hydrogen [J]. Int. J. Hydrogen Energy, 2010, 35: 9736
9 Elhoud A M, Renton N C, Deans W F. Hydrogen embrittlement of super duplex stainless steel in acid solution [J]. Int. J. Hydrogen Energy, 2010, 35: 6455
10 Liu Z B, Liang J X, Su J, et al. Research and application progress in ultra-high strength stainless steel [J]. Acta Metall. Sin., 2020, 56: 549
10 刘振宝, 梁剑雄, 苏 杰等. 高强度不锈钢的研究及发展现状 [J]. 金属学报, 2020, 56: 549
11 Jin S X, Cao X Z, Cheng G D, et al. Thermally promoted evolution of open-volume defects and Cu precipitates in the deformed FeCu alloys [J]. J. Nucl. Mater., 2018, 501: 293
12 Ohkubo H, Sugiyama S, Fukuzato K, et al. Positron-lifetime study of electrically hydrogen charged Ni, austenitic stainless steel and Fe [J]. J. Nucl. Mater., 2000, 283-287: 858
13 Canter K F, Mills Jr A P, Berko S. Efficient positronium formation by slow positrons incident on solid targets [J]. Phys. Rev. Lett., 1974, 33: 7
14 Nagai Y, Takadate K, Tang Z, et al. Positron annihilation study of vacancy-solute complex evolution in Fe-based alloys [J]. Phys. Rev., 2003, 67B: 224202
15 Zhang T C, Wang H T, Li Z C, et al. Positron annihilation investigation of embrittlement behavior in Chinese RPV steels after Fe-ion irradiation [J]. Acta Metall. Sin., 2018, 54: 512
15 张天慈, 王海涛, 李正操等. 国产RPV钢铁离子辐照脆化行为的正电子湮灭研究 [J]. 金属学报, 2018, 54: 512
16 Zhang L Z, Wang B Y, Wang D N, et al. Studies of Nb-TiAl alloy by positron annihilation techniques [J]. Acta Metall. Sin., 2007, 43: 269
16 张兰芝, 王宝义, 王丹妮等. 用正电子湮没技术研究Nb在TiAl合金中的掺杂效应 [J]. 金属学报, 2007, 43: 269
17 Eldrup M, Singh B N. Study of defect annealing behaviour in neutron irradiated Cu and Fe using positron annihilation and electrical conductivity [J]. J. Nucl. Mater., 2000, 276: 269
18 Deng W, Ruan X D, Huang Y Y, et al. Effects of twin size on the dislocation configuration during cyclic deformation of polycrystalline twin copper [J]. Acta Metall. Sin., 2005, 41: 33
18 邓 文, 阮向东, 黄宇阳等. 金属中高动量电子分布的实验研究 [J]. 金属学报, 2005, 41: 33
19 Chen Y Q, Wu Y C, Wang Z, et al. Positron annihilation study on interaction between hydrogen and defects in AISI 304 stainless steel [J]. Radiat. Phys. Chem., 2007, 76: 308
20 Würschum R, Farber P, Dittmar R, et al. Thermal vacancy formation and self-diffusion in intermetallic Fe3Si nanocrystallites of nanocomposite alloys [J]. Phys. Rev. Lett., 1997, 79: 4918
21 Wu Y C, Jean Y C. Hydrogen-induced defects of AISI 316 stainless steel studied by variable energy Doppler broadening energy spectra [J]. Phys. Status Solidi, 2004, 201A: 917
22 Zhu T, Jin S X, Gong Y H, et al. The influence of dislocation and hydrogen on thermal helium desorption behavior in Fe9Cr alloys [J]. J. Nucl. Mater., 2017, 495: 244
23 Zhu T, Cao X Z, Jin S X, et al. Helium retention and thermal desorption from defects in Fe9Cr binary alloys [J]. J. Nucl. Mater., 2015, 466: 522
24 Cao X Z, Xu Q, Sato K, et al. Thermal desorption of helium from defects in nickel [J]. J. Nucl. Mater., 2011, 412: 165
25 Munakata K, Shinozaki T, Inoue K, et al. Tritium release from lithium silicate pebbles produced from lithium hydroxide [J]. Fusion Eng. Des., 2008, 83: 1317
26 Gilbert E R, Garner F A. The influence of cold-work level on the irradiation creep and swelling of AISI 316 stainless steel irradiated as pressurized tubes in the EBR-II fast reactor [J]. J. Nucl. Mater., 2006, 367-370: 954
27 Zhang C X, Cao X Z, Li Y H, et al. Thermal evolution of vacancy-type defects in quenched FeCrNi alloys [J]. Appl. Phys., 2015, 119A: 1431
28 Gong Y H, Jin S X, Zhu T, et al. Helium self-trapping and diffusion behaviors in deformed 316L stainless steel exposed to high flux and low energy helium plasma [J]. Nucl. Fusion, 2018, 58: 046011
29 Koch T, Heinig K H, Jentschel M, et al. Study of interatomic potentials in ZnS—Crystal-GRID experiments versus ab initio calculations [J]. J. Res. Natl. Inst. Stand. Technol., 2000, 105: 81
30 Jin S X, Zhang P, Lu E Y, et al. Correlation between Cu precipitates and irradiation defects in Fe-Cu model alloys investigated by positron annihilation spectroscopy [J]. Acta Mater., 2016, 103: 658
31 Cao X Z, Song L G, Jin S X, et al. Advances in applications of positron annihilation spectroscopy to investigating semiconductor microstructures [J]. Acta Phys. Sin., 2017, 66: 027801
32 Hu Y C, Cao X Z, Li Y X, et al. Applications and progress of slow positron beam technique in the study of metal/alloy microdefects [J]. Acta Phy. Sin., 2015, 64: 247804
32 胡远超, 曹兴忠, 李玉晓等. 慢正电子束流技术在金属/合金微观缺陷研究中的应用 [J]. 物理学报, 2015, 64: 247804
33 Zhu T, Jin S X, Guo L P, et al. Helium/hydrogen synergistic effect in reduced activation ferritic/martensitic steel investigated by slow positron beam [J]. Philos. Mag., 2016, 96: 253
34 Cao X Z, Zhang P, Xu Q, et al. Cu precipitates in Fe ion irradiated Fe-Cu alloys studied using positron techniques [J]. J. Phys.: Conf. Ser., 2013, 443: 012017
35 Xin Y, Ju X, Qiu J, et al. Vacancy-type defects and hardness of helium implanted CLAM steel studied by positron-annihilation spectroscopy and nano-indentation technique[J]. Fusion Eng. Des., 2012, 87: 432
36 Jena P, Ponnambalam M J, Manninen M. Positron annihilation in metal-vacancy-hydrogen complexes [J]. Phys. Rev., 1981, 24B: 2884
37 Zhang S S, Cizek J, Yao Z J, et al. Self healing of radiation-induced damage in Fe-Au and Fe-Cu alloys: Combining positron annihilation spectroscopy with TEM and ab initio calculations [J]. J. Alloys Compd., 2020, 817: 152765
38 Duportal M, Oudriss A, Feaugas X, et al. On the estimation of the diffusion coefficient and distribution of hydrogen in stainless steel [J]. Scr. Mater., 2020, 186: 282
39 Ishizaki T, Xu Q, Yoshiie T, et al. The Recovery of gas-vacancy-complexes in Fe irradiated with high energy H or He ions [J]. Mater. Trans., 2004, 45: 9
40 Cao X Z, Zhu T, Jin S X, et al. Detection of helium in irradiated Fe9Cr alloys by coincidence Doppler broadening of slow positron annihilation [J]. Appl. Phys., 2017, 123A: 177
41 Wang K, Deng A H, Gong M, et al. Effect on microstructure of tungsten under helium ions irradiation with multiple energy [J]. Acta Metall. Sin., 2017, 53: 70
41 王 康, 邓爱红, 龚 敏等. 多能氦离子注入对W金属微结构的影响[J]. 金属学报, 2017, 53: 70
42 Sato K, Ikemura K, Krsjak V, et al. Defect structures of F82H irradiated at SINQ using positron annihilation spectroscopy [J]. J. Nucl. Mater., 2016: 468: 281
[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[4] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[5] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[6] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[8] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[9] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[10] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[11] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[12] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[13] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[14] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[15] 王瑾, 余黎明, 李冲, 黄远, 李会军, 刘永长. 不同温度对含与不含位错α-Fe中He原子行为的影响[J]. 金属学报, 2019, 55(2): 274-280.